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Weather and climate change are constant and ever-changing
processes that affect allergy and asthma. The purpose of this
report is to provide information since the last climate change
review with a focus on asthmatic disease. PubMed and Internet
searches for topics included climate and weather change, air
pollution, particulates, greenhouse gasses, traffic, insect habitat,
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and mitigation in addition to references contributed by the
individual authors. Changes in patterns of outdoor aeroallergens
caused by increasing temperatures and amounts of carbon
dioxide in the atmosphere are major factors linked to increased
duration of pollen seasons, increased pollen production, and
possibly increased allergenicity of pollen. Indoor air pollution
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Abbreviations used

ACO: Asthma/COPD overlap

CO2: Carbon dioxide

COPD: Chronic obstructive pulmonary disease

IPCC: Intergovernmental Panel on Climate Change

LPG: Liquid petroleum gas

PM2.5: Particulate matter of 2.5 mm or less

RCP: Representative Concentration Pathways

SOA: Secondary organic aerosol

VOC: Volatile organic compound
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threats anticipated from climate changes include microbial and
mold growth secondary to flooding, resulting in displacement of
persons and need for respiratory protection of exposed workers.
Air pollution from indoor burning of mosquito repellants is a
potential anticipatory result of an increase in habitat regions. Air
pollution from fossil fuel burning and traffic-related emissions
can alter respiratory defense mechanisms and work
synergistically with specific allergens to enhance immunogenicity
to worsen asthma in susceptible subjects. Community efforts can
significantly reduce air pollution, thereby reducing greenhouse
gas emission and improving air quality. The allergist’s approach
to weather pattern changes should be integrated and anticipatory
to protect at-risk patients. (J Allergy Clin Immunol
2019;143:1702-10.)

Key words: Weather, climate, allergy, asthma, pollution, pollen

Global warming and climate change are observable phenom-
ena. The Earth’s climate is constantly changing and variable over
time. Earth’s climate is dependent on incoming solar radiation,
outgoing thermal radiation, and the composition of the Earth’s
atmosphere. Other influences of Earth’s climate include the
Earth’s rotation, wind patterns, and ocean currents. Carbon
dioxide (CO2), in addition to methane and mixed greenhouse
gases, is accumulating in the atmosphere, largely because of fossil
fuel use, to collectively influence warming. In addition, the effect
of these pollutants on climate change must also account for
geologic weather cycles that are occurring every 10 to
100,000 years and often overlap. Much of the climate change ob-
servations are based on observed trends beginning around 1870,
as well as by complex computer modeling based on a number
of assumptions. Unfortunately, climate change has become polit-
icized, resulting in ongoing debate that might interfere in the
enactment of policy toward mitigation, adaptation, or both.

There is a considerable volume of scientifically compelling
observations on the climate that have been collected over the past
150 years, including evidence from ice cores dating back more
than 600,000 years. This evidence, which has been analyzed by a
group of scientists called the Intergovernmental Panel on Climate
Change (IPCC), is summarized to include the following:

d The globally averaged CO2 concentration has increased from
250 to 410 ppm over the past 150 years (www.ipcc.ch).

d During the past 150 years, the oceans have had a 26% in-
crease in acidity measured as the hydrogen ion concentra-
tion attributable to uptake of CO2 (www.ipcc.ch).

d Recent records indicate Greenland and Antarctic ice sheets
have been losing mass, the majority of glaciers worldwide
have shrunk, permafrost is thawing, and northern hemi-
sphere spring snow cover has decreased (www.ipcc.ch).

d Over the past hundred years, the global mean sea level has
risen by 0.19 m (0.17-0.21 m; www.ipcc.ch).

d In plants and animals seasonal activities and species abun-
dances have been altered in response to ongoing climate
change, affecting biodiversity (www.ipcc.ch).

d Recorded observations indicate that worldwide, the number
of record cold days and nights has decreased and the num-
ber of record warm days and nights has increased. Seven of
the last 10 years have been the hottest years on record
(www.ipcc.ch).
d The number of frost-free days has increased, and the dates
for frost-off are coming earlier (www.ipcc.ch).

d The frequency of heat waves has increased in large parts of
Europe, Asia, and Australia (www.ipcc.ch).

d Observed warming has increased heat-related and
decreased cold-related human mortality (www.ipcc.ch). In
addition to the IPCC report, the relationships between
heat waves and mortality have been detailed for Russia1

and India.2 In more affluent regions, adaptation to climate
changes is often more available, whereas developing coun-
tries have increased challenges because of high
vulnerabilities.3

d In the last decade, climate-driven changes in agriculture have
threatened economic stability, leading to mass migration of
human subjects from affected regions (www.ipcc.ch).

These natural system changes might currently have a minimal
direct effect on many human populations; however, there are
increasing observations in which the results of climate changes
are devastating individual populations.

It is important to distinguish between what is meant by the
terms weather and climate. Although weather conditions refer to
day-to-day fluctuations in temperature and precipitation, climate
changes refer to changes in long-term averages of daily weather
for an extended period of time. There are data to show that
increasing levels of CO2 are associated with increased crop yields
for wheat and rice; however, these increased yields are offset by
the detrimental effect of increasing temperatures, resulting in a
net reduction in crop production when CO2 level and temperature
increases are both taken into account.4-7 Moreover, in a meta-
analysis Myers et al8 demonstrate that in higher CO2 environ-
ments there is a significant decrease in protein content of grains,
including rice, wheat, and maize. Thus the overall negative effect
of climate change on crop yields and ocean acidification is con-
cerning because it is projected to affect the largest single primary
food source chain contributing to human nutrition.

Alterations in overall and regional precipitation events will be
more difficult to predict, but it is anticipated that some land regions
will experience an increase in heavy precipitation, with precipita-
tion events resulting in land erosion, whereas other land regions will
experience a decrease in precipitation resulting in drought, both of
which result in loss of life and population displacement. The results
of extreme sea-level changes that occur in conjunction with
hurricanes, typhoons, and flooding and result in devastating regional
events are of concern to human safety and health. Demonstrating
short-term weather fluctuations and their overall enumeration over
prolonged periods of time will be necessary to demonstrate a
concrete link to climate change and long-term trends.

http://www.ipcc.ch
http://www.ipcc.ch
http://www.ipcc.ch
http://www.ipcc.ch
http://www.ipcc.ch
http://www.ipcc.ch
http://www.ipcc.ch
http://www.ipcc.ch
http://www.ipcc.ch
http://www.ipcc.ch
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As we continue through the 21st century, predictions that are
largely based on current data and computer modeling propose that
the Earth’s surface temperature will continue to increase, oceans
will continue to get warmer and pick up more CO2, and sea levels
will continue to rise. It is also projected that the Arctic region will
continue to warmmore rapidly than the other parts of the globe. It
has been detected that human influence is the principal driver of
these changes. If the rate of human-manufactured pollution con-
tinues, climate change is expected to further amplify current risks
and create new unanticipated risks for natural and human systems.
Moreover, these risks will undoubtedly be unevenly distributed
and generally greater for disadvantaged persons and communities
in underdeveloped countries. Vulnerable populations, including
children, the elderly, and thosewith pre-existing conditions, espe-
cially pulmonary and cardiovascular diseases, will also be a great-
est risk. As recent hurricanes have demonstrated, however, even
countries with highly developed infrastructure will not be spared.

The relationship between climate change and humanmigration
is also of potential concern because the incidence rate of
respiratory disease to geographic location could be affected.
However, this aspect depends on the differential vulnerabilities of
populations and places because if places and populations are not
vulnerable or susceptible to climate change, then the climate-
migration relationship might not materialize.9 The exact future
consequences of these trends are speculative, but the allergy com-
munity should be knowledgeable about the issues, understand the
effect on allergy and asthma, and be well-versed in possible
means to mitigate adverse health consequences. Ultimately, the
approach to climate change should be integrated and anticipatory
to protect and treat our patients with asthma and other allergic and
climate-sensitive diseases from constituents that are likely driving
this phenomenon.
CHANGING PATTERNS OF OUTDOOR

AEROALLERGENS COULD AFFECT ASTHMA
Increasing temperatures and increasing amounts of CO2 in the

atmosphere are major factors that have been linked to increased
duration of pollen seasons, increased amount of pollen produced
by plants, and possibly increased allergenicity of pollen. These
changing events that affect patterns of pollen could affect allergic
asthma.

In various parts of the world, the duration of pollen seasons has
been increasing. For example, Ziska et al10 noted that from 1995
to 2009, the duration of the ragweed season in North America
increased in association with an increasing delay in the first frost
of the fall season. Furthermore, this effect was most pronounced
in more northern locations, such as certain cities in Canada expe-
riencing a ragweed season prolonged by more than 3 weeks (eg,
Saskatoon, Canada, experienced 44 days of ragweed season in
1995 and 71 days in 2009).10 In addition to a prolonged fall pollen
season, there is an earlier start of the spring tree pollen season.
Data from pollen-counting stations across the United States
have revealed that the spring pollen season started earlier in the
recent decade compared with prior years.11,12

This lengthening of the pollen season demonstrated in North
America has also beenwitnessed in Europe. Although not directly
evaluating pollen counts, a 2002 British study of 385 plant species
found that the average first flowering date advanced 4.5 days in
the previous decade, with 16% of species flowering significantly
earlier by an average of 15 days and only 3% of species flowering
significantly later.13 In Poland the fall weed season has increased
in duration in recent decades because of a later end date to the sea-
son.14 A study from Italy evaluating the years 1981 to 2007 dem-
onstrates a progressive increase in the duration of certain pollen
seasons with an increased total pollen load.15 Importantly, it
was also noted that the rates of patients in that region sensitized
to pollen increased during these years, whereas the percentage
of subjects sensitized to dust mite remained stable.15

In addition to increased duration of the pollen season, there
have been studies demonstrating an increased amount of pollen
released during these seasons. Pollen data from 1987 to 2016 in
Oklahoma found significant increases in the seasonal pollen index
over time, including peak concentrations that are reached by
eastern red cedar tree pollen.16 When evaluating multiple com-
mon pollens, others have noted the average peak value and annual
total production of airborne pollen has increased in the recent
2 decades.11

In addition to increased quantity, there is some evidence that
greater temperatures affect IgE binding. Namely, it was demon-
strated that birch pollen (Bet v 1) extracts from trees grown in
warmer temperatures had stronger IgE binding intensity.17 Singer
et al18 also demonstrated increasing Amb a 1 levels in ragweed
pollen as a function of increasing CO2 levels. With increased pol-
len production and longer pollen seasons combined with the hy-
pothesized increase in the frequency of thunderstorms in some
geographic areas with climate change, there is a potential height-
ened importance of thunderstorm-related asthma epidemics.19

This phenomenon reflects the mechanical and/or osmotic rupture
of pollen that allows for release of smaller particles and bio-
aerosol formation to be deposited in deeper airways, resulting
in asthma attacks.19

Another contributing aspect is the change in geographic
distribution of various allergenic plants in recent decades. These
include range expansions for some species as well as latitudinal
or altitudinal shifts for other species.20,21 Distribution changes
have been documented in trees, shrubs, weeds, and
grasses16,20-23; however, the expansion of ragweed in Europe
has the greatest implications for patients with allergic asthma.
Ragweed has become invasive through large areas of Central
and Eastern Europe since the mid-20th century, and the pollen
has become a major health issue in many areas.24-27 The pro-
jected effect of climate change on ragweed has been perhaps
the most well-studied (Table I).28 Several studies in Europe
have used computer simulations to predict the potential effects
of future climate change on ragweed spread and pollen sensiti-
zation rates.25-27 Simulation studies have demonstrated that
the number of subjects sensitized to ragweed is expected to
more than double in Europe within only a few decades.27 The
greatest proportional increases are expected to occur in coun-
tries where current ragweed sensitization rates are low. Associ-
ated with the increased sensitization rates, higher pollen counts
and longer pollen seasons are expected to increase the severity of
symptoms in those sensitized.27 It is also noted that there is ev-
idence that with extremely high temperatures, ragweed pollen
release can be hindered.29-31

Increasing CO2 is a crucial factor in the growth of plant species
and increased pollen production. In environmentally controlled
greenhouses it has been demonstrated that increasing tempera-
tures and increasing atmospheric CO2 concentrations result in
enhanced ragweed pollen production.32,33 Similarly, controlled
studies have shown that increased CO2 levels result in an



TABLE I. Projected changes in the biology of ragweed and the consequences for aeroallergen production, distribution, and

exposure from spatial and temporal studies

Methodology Variables examined Outcome Implications

Glasshouses, growth

chambers, single plants

Projected future CO2 concentrations,

earlier springs

Bigger plants, more flowering, pollen

production increases, more

allergenic pollen

Pollen production and allergenicity

might increase with climate

change scenarios

Prairie grassland,

plant mixture

18C-28C increase, clipping to

simulate herbivory

Significant increases in pollen

production and diameter with

warming

Warming and herbivory might

stimulate pollen size and

production

Disturbed soil in

urban-rural transect,

plant succession

Urban microclimate of warmer

temperatures, more CO2, longer

growing season

Larger plants, earlier flowering,

reduced allergenicity

Microclimate changes, similar to

near-term IPCC projections might

already be stimulating pollen

production and increased exposure

in urban areas

National Allergy Bureau

and Aerobiology

Canada, pollen counts

Start and end of pollen season since

1990s from Texas to Canada

Duration of pollen season increasing

as a function of latitude in North

America

Warming might have already altered

pollen exposure in North America

Adapted from Ziska and Beggs.28
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increased amount of grass pollen production, even in the setting of
increased ozone levels, a repressor of pollen production.34

Urban areas might be particularly susceptible to these envi-
ronmental changes because the inner city is a place known for
increased temperatures and increased CO2 levels. Ziska et al35

demonstrate that urban environments, when compared with rural
environments, had greater temperatures and greater CO2 produc-
tion that was associated with ragweed plants growing faster, flow-
ering earlier, and producing more pollen. This is supported by
data from Europe detailing an increasing trend in yearly amount
of airborne pollen that was more pronounced in urban areas.36

Plants that grow in an enhancedCO2 environment have a higher
carbon/nitrogen ratio in their leaves that can affect growth of or-
ganisms, such as Alternaria species, which can become more
abundant and produce more allergens in these environments.37

Lake and Wade37 demonstrate that an increase in CO2 concentra-
tion from 400 to 800 ppm increased established mycelia colonies
40%.

Recently, modeling efforts have been made to quantify the
projected medical costs of current pollen trends. Anenberg et al38

used different emission scenarios termed the Representative Con-
centration Pathways (RCP) of 4 greenhouse gas concentration tra-
jectories adopted by the IPCC (www.ipcc.ch) to analyze the
future effect of projected oak pollen distributions on emergency
department visits and health care costs. Under their projections,
‘‘severe climate change (RCP8.5)’’ could increase oak pollen sea-
son length and associated asthma-related emergency department
visits by 5% by 2050 and by 10% by 2090, whereas ‘‘moderate
climate change (RCP4.5)’’ modeling would result in a 4% in-
crease in emergency department visits by 2090.38 Richter
et al25 simulated the future costs of treating ragweed allergy in
Austria and southern Germany, with predictive costs increasing
in magnitude of 200% to 350% for 2050. A similar analysis
was performed for ozone exposure. This analysis demonstrated
an increase in cost that was dependent on the various predicted
climate model scenarios and regional differences within the
United States.39

Recognizing these past regional changes in pollen trends
toward longer pollen seasons, increased pollen quantity, and
perhaps increased allergenicity of pollen as a result of weather
and climate change might be useful for allergy/asthma health care
providers, researchers, and policymakers in anticipating future
needs. The predictive models of climate change scenarios to date
suggest that the numbers of patients with allergic asthma seeking
care will increase, and to meet this need, it is likely that enhanced
early warning systems and effective training and preparation of
existing and future health care providers will be necessary.
WEATHER AND CLIMATE CHANGES AFFECT THE

INDOOR BUILT ENVIRONMENT TO AFFECT

ASTHMA
Changes in short-timeweather and longtime climate conditions

also affect indoor built environment exposures that affect patients
with allergic asthmatic disease. Some of these effects are
predictable, but others might not be predictable. For example,
as sea levels rise and ocean temperatures warm, storms and
hurricanes are predicted to increase in frequency and intensity,40

increasing vulnerability and exposure to coastal flooding.41 The
catastrophic floods resulting from Hurricanes Katrina and Rita
in New Orleans, Louisiana, in 2005 promoted heavy microbial
and mold growth, with levels of indoor molds, endotoxins, and
fungal glucans similar to levels found in agricultural environ-
ments and at levels associated with adverse respiratory health ef-
fects.42-44 The Head-Off Environmental Asthma in Louisiana
study that enrolled families affected from the flooding found
that 94% of the families had to move at least once, with many
moving more than 2 or even 4 times to find acceptable housing.45

The Head-Off Environmental Asthma in Louisiana study demon-
strates that remediation efforts coupled with moving families to
safe homes decreased the airborne mold (except Alternaria spe-
cies) and dust allergen levels,46 and moreover, after 1 year, there
were few associations found between mold and other allergen
concentrations with asthma.45

Because extensive remediation and renovations of the built
environment are required after massive storm damage, protection
of exposed workers in these efforts is necessary. Survey data
collected from persons who participated in the environmental and
reconstruction efforts after Hurricane Sandy (2012; New Jersey/
New York) demonstrated that more than one third of participants
(34.4%) reported post-Sandy lower respiratory tract symptoms.47

Furthermore, there was a dose-response relationship between the

http://www.ipcc.ch
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number of types of Sandy-related exposures reported and post-
Sandy lower respiratory tract symptoms.47 During the recovery
efforts after Hurricane Katrina, it was demonstrated that the use
of elastomeric respirators (ie, tight-fitting, air-purifying respira-
tors with replaceable filters or cartridges attached to a rubber or
silicone face piece) performed better than N95 respirators to
reduce exposure levels to endotoxins and molds in remediation
workers,42 which is valuable information that can be applied to
future events. Most recently, in the aftermath of Hurricane Maria
in Puerto Rico (2017), the Associated Press reported an increase
in asthma and asthma severity that could be attributed to increased
use of diesel- or gasoline-powered generators, high mold counts,
and increased problemswith rodents and cockroaches in damaged
homes.48 It is too early to know the asthmatic consequences
ascribed to the 2018 weather events that included but were not
limited to the California wildfires, Atlantic hurricanes, volcanic
activity in Hawaii, and flooding events in Venice, Italy.

A potential emerging indoor pollutant consequence as a result
of climate change that might not be predictable is the generation
of indoor air pollution occurring predominately in developing
countries as a result of burning mosquito repellants.49 Under cur-
rent and future climate projections, the distribution of mosquito
habitat ranges that are defined as warm and humid climates asso-
ciated with high rainfall is anticipated to change.50,51 Based on a
recent Centers for Disease Control and Prevention report,52 the
incidence of vector-borne disease has tripled in the United States
between 2004 to 2016. Additionally, since 2004, 9 new diseases
have been introduced in the United States, including the chikun-
gunya and Zika viruses.52 Pyrethrum-containing repellants (eg,
coils, mats, or liquidators) are typically burned for 6 to 8 hours
to protect against mosquito-borne parasitic and viral disease,
which results in very high levels of indoor air toxicants.49 The pol-
lutants induced include particulate matter of 2.5 mm or less
(PM2.5)

53 and particulate-associated heavy metals (lead and cad-
mium),49 polycyclic aromatic hydrocarbons, formaldehyde, ben-
zene, and carbon monoxide.54 Furthermore, studies have
demonstrated an increase in respiratory symptoms, including
asthma, in persons exposed to mosquito coils.53 Substitution
with a charcoal base (which can also release toxic emissions)
was shown to reduce this indoor air pollution by 5- to 10-fold.54

Although increased allergen and respiratory health hazards
resulting from flooding of indoor environments after massive
storms will affect patients with asthmatic disease andmight affect
the incidence of asthma development, there are also potential
unanticipated consequences as the mosquito habitat and use of
repellent example provides. Another potential consequence from
climate change that could affect asthma outcomes is the African
dust events that have increased because of drought conditions and
subsequently affect areas in the Caribbean, the southern United
States, and other parts of the world.55 In addition, there might
likely be unanticipated consequences fromweather changes lead-
ing to adaptions in the indoor built environment, such as changes
in architectural/construction techniques leading to tighter build-
ing, filtration systems, or external air-exchange systems.
EFFECT OF CLIMATE CHANGE AND AIR

POLLUTION INTERACTIONS TO AFFECT ASTHMA

HEALTH
Weather changes closely interact with air pollution to represent

a major challenge that can affect the health of asthmatic patients.
Human-influenced air pollutants (ie, anthropogenic) are predom-
inately derived from burning of fossil fuels (eg, power plants and
vehicles) and biomass to include CO2, black carbon, sulfate, ni-
trogen oxides, volatile organic compounds (VOC), ozone precur-
sors, and particulate organicmatter.56,57 Agricultural emissions of
methane and ammonia are also important anthropogenic air pol-
lutants.56 Naturally occurring air pollutants are recognized as
smoke from wildfires, wind-blown mineral dust, and VOCs
from trees. Although these aerosols affect weather and climate
changes, these pollutants can be transformed by weather and
climate factors, such as temperature and humidity, to modify
composition and enhance toxicity and biological proper-
ties.56,58,59 For example, higher temperatures favor rapid forma-
tion of ozone, and VOC and nitrogen oxide levels increase with
temperature because of increased fossil fuel combustion of elec-
tricity generation during heat waves.56,60 Particulate matter,
particularly PM2.5, which is a complex mixture of airborne parti-
cles emitted from a great variety of sources (eg, vehicles, power
plants, burning of fossil fuels, heating systems, wild fires, and
windblown dust), can be modified by weather systems to affect
distribution and concentration, as well as volatilize at higher
temperatures.55,56,61

Air pollution can increase the frequency of emergency
department visits and hospitalizations for asthma, increase the
incidence and development of asthma, and act as an adjuvant to
potentiate the development of pollen allergy.62-66 Mechanistic
studies have demonstrated a role for pollutants in inducing airway
inflammation, neutrophil influx, cytokine/chemokine release,
production of white blood cells, oxygen free radical production,
endotoxin-mediated cellular and tissue responses, stimulation of
irritant receptors, and covalent modification of key cellular en-
zymes.66-69 Pollutant exposures can also alter mucus production,
damage the airway epithelium, impair mucociliary ciliary clear-
ance, and trigger airway hyperreactivity.59,70-72 Importantly, pol-
lutants (eg, PM2.5 and ozone) can act as adjuvants and enhance
allergy by skewing responses toward IgE production and allergic
TH2-mediated responses, as well as stimulation of TH17 re-
sponses.58,67,72,73 Ambient air pollution and polycyclic aromatic
hydrocarbon exposure has also been shown to impair regulatory
T-cell function in asthmatic patients,74,75 but it is also recognized
that signaling through the aryl hydrocarbon receptor induces hu-
man regulatory T cells.76 Generation of free radicals by these par-
ticulate components, in addition to a contribution from
semivolatile organic components and gases, such as ozone, nitro-
gen oxides, and sulfur dioxide, can induce oxidative stress, which
can lead to further proinflammatory effects in the respiratory tract
and lung.63,67,73 Although the effect of individual air pollutants
might be unique, the combined effect of exposure spikes or
chronic low-level exposure to a mixture of airborne pollutants
can result in a pronounced effect on patients with underlying
allergic or nonallergic asthmatic disease.59,65,69,77,78

Air pollutionmight also be an important risk factor affecting the
progression of asthma to chronic obstructive pulmonary disease
(COPD), which is referred to as asthma/COPD overlap
(ACO).79,80 It was demonstrated in the Canadian Community
Health Survey that persons exposed to higher levels of air pollution
had nearly 3-fold greater odds of ACO.81 Specifically, adjusted
hazard ratios of ACO and cumulative exposures to PM2.5 and
ozone were 2.78 (95% CI, 1.62-4.78) and 1.31 (95% CI, 0.71-
2.39), respectively.81 Furthermore, the air quality health index, a
composite air pollution index based on levels of ozone and fine



FIG 1. Overview figure summarizing the effect of weather and climate change with indoor and outdoor air

quality in asthmatic patients. The image of fungus on indoor home wall after Hurricane Katrina in New

Orleans, Louisiana, in 2005 and the image of pollen-releasing content caused by osmotic stress

(Amaranthus retroflexus–releasing starch granules) are courtesy of Rosa Codina.
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particulatematter, was associatedwith an increased risk of concur-
rent COPD and asthma, with an adverse effect on mortality.82

There is mixed news regarding the current trends in air
pollution parameters. The American Lung Association State of
the Air 2017 report of levels of ozone and particle pollution from
official monitoring sites encompassing the years 2013-201566

found improvement in air quality in ozone and year-round particle
pollution compared with previous years but found an increase in
high spikes of particle pollution. Although trends toward
improvement since the Clean Air Act of 1970 have been wit-
nessed, the number of persons exposed to unhealthy levels of
air pollution remains at more than 125million, with 38.9% of per-
sons in the United States living in counties with unhealthy levels
of either ozone or particle pollution.66 A changing climate that in-
cludes increased wildfire smoke and extreme weather events led
to a few cities reporting their worst numbers of unhealthy days
since this reporting began. For example, cities in the West and
Southwest dominate the most ozone-polluted list, Western states
had the highest fine and ultrafine particle exposure, and short-term
particle pollution spikes from burden of smoke from wildfires,
brush fires, and wood-burning devices were found in the Western
United States and Alaska.66

With new fossil fuel combustion technologies (eg, gasoline
direct-injection engines for cars), it is likely that future particulate
emissions could also change, with evidence of health concerns
increasing with ultrafine particles and secondary organic aerosols
(SOAs). Ultrafine particles that are generated as byproducts of
fossil fuel combustion, condensation of semivolatile substances, or
industrial emissions represent health concerns to asthmatic
patients.83 These particles might be more dangerous than larger
particulate matter because of their chemical composition, small
size, capability of generating reactive oxygen species, and deep
penetration in the respiratory system.83 Because these particles
are concentrated in locations that are in proximity to busy traffic
and are not being tracked, investigators will need to understand
how these particulates are affected by climate and weather changes
and any resulting effect on asthma.83 Lastly, SOAs that are formed
byoxidation and complex reactions of sunlight and volatile organic
components from trees, plants, and petroleum-derived fuels ac-
count for two thirds of the total organic aerosols in urban aerosols.
Although the role of SOAs in asthmatic patients has yet to be
defined, studies show that SOAs can affect lung responses,
including increasing gene expression profiling of the nuclear
factor–like 2 transcription factor network, as well as TNF-a and
IL-6 expression.84-87 There should be continual awareness and
research of not only the traditional fossil fuel combustion products
but also other air pollutant sources, such as ultrafine particles and
SOAs, and their interplay with climate change and asthma.
EXAMPLES OF EFFORTS TO REDUCE ADVERSE

ENVIRONMENTAL CONDITIONS TO IMPROVE

HEALTH
Indoor and outdoor air pollution can be reduced through human

influence and community efforts. Use of biomass fuels (animal
dung, crop residues, wood, and charcoal) is a major cause of both
indoor and ambient air pollution, and it is widely recognized that
exposure to smoke from the burning of biomass fuels is a major
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cause of global morbidity and mortality from respiratory dis-
eases.88-90 There are studies reporting an association of indoor
cooking (either solid fuels or gas) with asthma in both adults and
children and with asthma exacerbations.88,91,92 Data from India’s
Third National Family Health Survey of men and women aged
20 to 49 years observed a significantly greater risk of self-
reported asthma in women (odds ratio, 1.26; 95% CI, 1.06–1.49),
but not men, exposed to cooking with solid fuels after adjusting
for various confounding factors.93 Furthermore, children in rural
India observed a strong association (odds ratio, 2.20; 95% CI,
1.16-4.19) of physician-diagnosed asthma and decreased lung
functionwith indoor cooking.94 Because of adoption of safer cook-
ing and heating fuels, such as liquid petroleum gas (LPG), in devel-
oping countries, the recent global burden of disease report
highlights a significant reduction (>40%) in the use of solid fuels
from 1990 to 2016 in the world.95 As a further example of initia-
tives to improve health, the government of India launched the Ujj-
wala scheme in 2016, which provides the cleaner fuel (LPG) to
households at below the poverty line.

An example of how community efforts worked to affect air
quality, reduce greenhouse gases, and improve respiratory disease
conditions is the Fairbanks North Star Borough in Alaska, which
has some of the worst spikes in air pollutants because of the
increase in wildfires and use of wood and coal for energy, heating,
and cooking.66 Spikes in particulate matter (PM2.5) levels in inte-
rior Alaska have been reported as almost double the next most
polluted area in the United States and nearly 4 times the recom-
mended limit for unhealthy air. Man-made sources of PM2.5 in
Fairbanks include outdoor burning, wood- and/or coal-burning
heating devices, automobiles and other vehicles with combustion
engines, and industrial facilities using coal-fired power plants.
Alaska community groups joined together to demand that respon-
sible officials address the air quality and related health concerns
that North Star Borough residents and their families face when
simply breathing in Fairbanks. As a result of grass-root commu-
nity efforts, the US Environmental Protection Agency approved
the state implementation plan revisions submitted by the State
of Alaska to address the Clean Air Act, effective October 10,
2017, to improve air quality.96,97 Next, the Interior Gas Utility
was established in 2012 by the Fairbanks North Star Borough to
offer area residents a lower-cost alternative to heating oil and a
cleaner-burning fuel than either oil or firewood. Transporting
LPG to Fairbanks is also being pursued.98 Finally, alternative en-
ergy sources to successfully heat buildings using a ground-source
heat pump buried deep in the Earth are being pursued, with 60
installed in homes in the Fairbanks area at time of this review.99

It is also recognized that California put climate legislation AB
32 in place to target greenhouse gas reductions that set in motion a
cascade of regulations, subsidies, and performance standards to
promote a long-term approach to improving the environment.100

These examples of efforts to reduce indoor and outdoor air pollut-
ants to ultimately protect against adverse health effects, including
asthma, might provide motivation to other communities needing
to reduce pollutants.

The legislative efforts by governments to reduce atmospheric
pollutants has been ongoing but are full of challenges because of
differing opinions on economic and political priorities. The
greatest sources of air particulates having the greatest effect on
human respiratory health emanates from local emissions from
wood stoves, burning distillate oil, industrial sources (power
plants), and mobile emissions. Implementation of stringent air
quality standards in the United States and Europe has had an
effect on reducing air pollution and improving respiratory health
in some regions more than others in the United States. Legislative
efforts can be effective in combating air pollution to potentially
reduce climate change patterns that have been observed over the
past few decades.
CONCLUSION
The health effects fromweather and climate changewith indoor

and outdoor air quality, as discussed in the report (summarized in
Fig 1), are many and varied. Air pollution and climate change are
closely related, with air pollutants contributing to atmospheric
temperature and increasing temperatures from climate change
leading to increases in natural VOC emissions. In addition, CO2

emissions primarily from burning of fossil fuels are not only an
important driver of climate change but also major sources of air
pollutants. Larger and more frequent wildfires associated with
climate change could also significantly reduce air quality.

These related current event trends could have a devastating
effect on our planet. In a recent Lancet article, the potential effect
of current climate change trends we have been observing is
described as the ‘‘biggest global health threat of the 21st cen-
tury.’’101 Likewise, this challenge might provide the greatest op-
portunity to curtail the ensuing public health crisis.

We in the allergy and scientific community should be
knowledgeable on how atmospheric conditions affect increases
in levels of air pollutants and aeroallergens and their effect on
allergic and respiratory health and how such exposures can be
meaningfully reduced. We should continue to adapt our practices
to meet the needs of our patients in the face of ever-changing
patterns and presentation of disease that might result from
weather and climate changes. Moreover, we can take steps to
expand coordinated research monitoring of climate’s effect on
pollen trends, allergic sensitization, and asthma severity. We can
also advocate for preventionmeasures, become involved in policy
debates, or both. A recent review of studies investigating the
effects of nutrition on air pollution and various chronic respiratory
diseases, including asthma, suggested that dietary and/or nutri-
tional supplements might be somewhat beneficial with helping
protect against air pollution–induced respiratory damage102;
however, more robust evidence is needed.

Climate and weather patterns will continue to change, and new
difficulties will likely emerge that could affect asthma and
allergies. As physicians and scientists, there should be a strong
commitment to develop strategies for taking actions that will
protect vulnerable persons at risk for adverse respiratory health
outcomes.
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