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Artificial and augmented intelligence (AI) and machine learning
(ML) methods are expanding into the health care space. Big data
are increasingly used in patient care applications, diagnostics,
and treatment decisions in allergy and immunology. How these
technologies will be evaluated, approved, and assessed for their
impact is an important consideration for researchers and
practitioners alike. With the potential of ML, deep learning,
natural language processing, and other assistive methods to
redefine health care usage, a scaffold for the impact of AI
technology on research and patient care in allergy and
immunology is needed. An American Academy of Asthma
Allergy and Immunology Health Information Technology and
Education subcommittee workgroup was convened to perform a
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scoping review of AI within health care as well as the specialty of
allergy and immunology to address impacts on allergy and
immunology practice and research as well as potential challenges
including education, AI governance, ethical and equity
considerations, and potential opportunities for the specialty.
There are numerous potential clinical applications of AI in
allergy and immunology that range from disease diagnosis to
multidimensional data reduction in electronic health records or
immunologic datasets. For appropriate application and
interpretation of AI, specialists should be involved in the design,
validation, and implementation of AI in allergy and
immunology. Challenges include incorporation of data science
and bioinformatics into training of future allergists-
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Abbreviations used

AAAAI- A
merican Academy of Asthma Allergy and

Immunology

AI- A
ugmented intelligence
AI-CONSORT- A
rtificial Intelligence Consolidated Standards of
Reporting Trials
ANN- A
rtificial neural networks

BDD- B
reakthrough device designation

CDS- C
linical decision support

DL- D
eep learning
EHR- E
lectronic health record

EoE- E
osinophilic esophagitis

EP- E
lectronic phenotyping
FDA- F
ood and Drug Administration

HITE- H
ealth Informatics Technology and Education

IEI- I
nborn errors of immunity

ML-M
achine learning

NLP- N
atural language processing

PID- P
rimary immunodeficiency disorder
SaMD- S
oftware as a Medical Device

SVM- S
upport vector machine
immunologists. Published by Elsevier Inc. on behalf of the
American Academy of Allergy, Asthma & Immunology (J
Allergy Clin Immunol Pract 2022;10:1178-88)

Key words: Artificial intelligence; Asthma; Primary immunode-
ficiency; Atopic dermatitis; Augmented intelligence; Clinical de-
cision support; Electronic health records; Equity; Machine
learning; Natural language processing; Medical education

Artificial intelligence, augmented intelligence (AI), andmachine
learning (ML) are gaining traction in health care with the promise
of providing assistance to clinicians in interpreting complex data-
sets, improving disease diagnosis, and facilitating clinical decision
support (CDS).1 AI enables computers to imitate human intelli-
gence with its ability to observe, problem solve, and learn, whereas
ML, and the related area of deep learning (DL), is the ability of
systems to learn, extract patterns, and refine performance over
time.2 AI leverages ML to enable actionable use of data in contrast
to autonomous replacement of human intellect. For example,
artificial neural networks (ANN) are a type of DLmodel that uses a
series of layers to analyze data inputs for prediction or regression via
a nodal structure that mimics the human brain.3 These and other
DL algorithms allow for analysis of high-dimensional and complex
data that are being used widely in research settings.

The mechanics of AI center on analysis of machine-readable
elements assembled for the purpose of predicting an outcome
(ie, classification or regression) of interest.4 The use of AI algorithms
in health care depends on the construction of validated datasets
derived from structured and unstructured data of relevance.5 If
validated datasets are maintained with appropriate governance, they
may be amenable for algorithmic mining and model development.

Expenditure on health care AI is projected to increase from
$2B in 2018 to $34B by 2025.6 The National Academy of
Medicine has emphasized the “quadruple aim” of improved
outcomes, reducing cost, and improving patient and physician/
provider experience in health care delivery. AI has the potential
to positively impact these aims2 while advancing professional
development and medical education (Figure 1).
Specialties such as cardiology, oncology, and radiology were
early AI adopters, whereas allergy and immunology is beginning
to incorporate the use of AI. AI and ML appear to be well suited
for the field of allergy and immunology where large, high-
dimensional datasets are common. The use of big data
approaches for infectious disease outbreak7 prediction, asthma
tracking,8,9 and immunologic modeling from vaccination10 are
contemporary examples of use of AI. Similar to the push for
adoption of evidence-based medicine in medical education,
awareness of the data sources being used in models, application
to CDS, and assessment of quality, transparency, reproducibility,
and transferability are new areas for trainee education.11

This American Academy of Asthma Allergy and Immunology
(AAAAI) workgroup report aims to develop a framework for un-
derstanding specialty-specific issues relevant to AI. Using search
terms and Medical Subject Headings (MeSH) across the AI, ML,
data science, data governance, and systems biology landscape along
with common allergic conditions (eg, “asthma,” “food allergy,”
“drug allergy,” “immunodeficiency,” “atopic dermatitis”), literature
was reviewed via PubMed to understand the current status and
potential impact of AI on clinical practice and research in allergy and
immunology. Readers should note that the AAAAI does not have a
formal position on AI use and implementation at this time, and this
workgroup report is a summary of recent and relevant literature
across the AI spectrum as assembled by membership of the AAAAI
Health Informatics, Technology and Education (HITE) commit-
tee. In addition, opportunities for usingAI, exploring potential areas
for standardization including operational difficulties that might
impact adoption of AI in allergy and immunology will be explored.
We will delve into impacts of AI on research and the need for
development of a framework for AI in allergy and immunology
before broad adoption or implementation.

IMPACT ON ALLERGY AND IMMUNOLOGY

CLINICAL PRACTICE

The clinical practice of allergy and immunology encompasses
a variety of health care practitioners such as physicians, allied-
health practitioners, nurses, as well as researchers, and labora-
tory technologists. In addition, policy makers and payers inter-
sect with health technology such as electronic records and
telemonitoring to create a complex network of stakeholders
involved in assuring patient safety and quality, appropriate and
timely diagnosis of diseases, and appropriate selection of treat-
ments. Because the immune system is extraordinarily complex,
this intersectionality is not well addressed in the current health
care system. Although AI seems well poised to address some of
the challenges, there are as yet several limitations on its imple-
mentation and use. In the next section, we will highlight some of
the nascent and potential applications of AI that are applicable to
allergy and immunology research and practice.

Disease diagnosis

Health care datasets, such as electronic health records (EHRs),
and pathology images (eg, eosinophils in eosinophilic gastroin-
testinal disease biopsies) present unique challenges and oppor-
tunities for data extraction.6 A major focus of AI in health care is
automated disease detection12 where electronic phenotyping
(EP) of patients with distinct clinical features can enable
machine-readable information and detection.13 Development of
precise EPs has proven useful for searching and ascertainment of
large datasets to identify disease entities.14 Similar approaches



FIGURE 1. Quadruple aim of augmented intelligence applied to allergic and immunologic disorders. EHR, Electronic health record; IEI,
inborn errors of immunity.
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could be applied for allergic and immunologic diseases and will
be discussed in this AAAAI workgroup report.

Within the field of allergy and immunology, an unmet need
includes detection of patients at risk for primary immunodeficiency
disorders (PIDs) or inborn errors of immunity (IEI) before fatal
infection or organ damage. Claims data have been modeled for
disease detection as one approach, and ML has been applied to
available laboratory data such as calculated globulin fraction to
detect hypogammaglobulinemia.15,16 In addition, diagnoses from
FIGURE 2. Augmented intelligence (AI) w
EHRs have been used to determine risk and provide guidance about
the most likely International Union of Immunological Societies
category of IEI.17 These examples of structured health data mining
show the possibilities of applying AI systems within learning health
systems to improve diagnostic rates for patients with rare disease
within the context of allergy and immunology. Figure 2 illustrates
how undiagnosed PIDs or IEIs benefit from iteratively updated
clinical data with ongoing disease characterization. Data extracted
and housed in a digital learning repository may be processed and
orkflow in a learning health system.



FIGURE 3. Recent examples of machine learning (ML) approaches for asthma prediction and control. AI, Augmented intelligence; EHR,
electronic health record; ICS, inhaled corticosteroid; LABA, long-acting b-agonist; PEFR, peak expiratory flow rate.

TABLE I. Potential clinical and laboratory applications of AI in allergy and immunology

Area of allergy and immunology Unmet need Potential application of AI

Inborn errors of immunity/immune
dysregulatory disorders

Early diagnosis, phenotyping, prognosis Mining EHR information and classification

Adverse reactions to drugs or vaccines Identifying causative drug, alternate drug
tolerance prediction

Identifying reaction type

Time series analysis/deep learning
Phenotyping

Asthma Prediction of exacerbations, endotypes, and
response to therapy

Biomarker identification

Time series analysis/deep learning
Unsupervised learning

Food allergy Biomarker identification for prognosis,
tolerance

Unsupervised learning

Eosinophilia and EGIDs Diagnosis, phenotyping, endotyping,
prognosis prediction, response to therapy

Mining EHR information and phenotyping

COVID19-related disease MIS-C prediction
Contact tracing/disease spread prediction

Mining EHR information and classification
Clustering/geospatial analysis

Laboratory immunology Biomarker identification
Disease correlations

Unsupervised learning
Deep learning

Drug discovery Drug repositioning Deep learning, support vector machines

AI, Augmented intelligence; EGID, eosinophilic gastrointestinal syndrome; EHR, electronic health records; MIS-C, multisystem inflammatory syndrome—COVID.
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analyzed with a resultant AI algorithm that assists with more ac-
curate disease diagnosis for future cases.

Clinical practice and diagnostic decision support
Allergy and immunology patients may present with significant

complexity requiring analysis of both structured and unstruc-
tured EHR data for optimal information use. Natural language
processing (NLP) is an AI subdomain that may be applied to
allergy and immunology through extraction of unstructured
concepts (eg, disease symptoms) from free text entered in clinical
notes. NLP is proposed as a mechanism for predicting patient
outcomes (eg, exacerbations or hospitalization for asthma) that
enable targeted interventions for improving outcomes in at-risk
individuals. ML and NLP models have been built using EHR
data and remote monitoring to classify asthma severity using
features such as medications, symptoms, lung function, and
comorbid conditions.18-20 In addition, some ML models have
predicted asthma exacerbations from telemonitoring data in adult
patients requiring ER evaluation and hospital admission with
high sensitivity, specificity, and accuracy.21,22 Further, validation
efforts using balanced population data will be required to further
validate these data. The ability to aggregate data into AI models
from various data streams (eg, EHR, claims data, wearables, and
immunologic data) remains a challenge; however, 2 recent



FIGURE 4. A beta-lactam artificial neural network to predict risk of reactions. This neural network takes parameters (eg, patient age,
duration or location of drug rash, suspected culprit medication, etc), represents them as numbers, and uses them as “inputs” to the neural
network. Nonlinear mathematical formulas are used to pass the information between the nodes in the hidden layers of the neural network,
ultimately resulting in an “output prediction” for a given set of input parameters. In the case of a drug allergy prediction algorithm as
shown, the output could be a probability of high, medium, or low risk of developing a reaction (eg, P > .8 ¼ high risk, P < .20 ¼ low risk,
and between is medium). Neural networks are initially “trained” using data for which the output is known. For example, it may be a
dataset containing information about a large group of patients who have been evaluated and challenged for penicillin allergy. The neural
network takes this known data, passes the inputs through the model, and “tunes” the mathematical formulas in the hidden layers to
maximize the prediction accuracy of the model. Then a new set of parameters (eg, for a new patient being evaluated for drug allergy) is
input into the model to generate a prediction of the likelihood of PCN allergy. PCN, penicillin.
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studies indicate that it may be possible23,24 to use AI models for
asthma prediction. In the context of asthma, EHR extracted data
such as peak expiratory flow rate, long-acting b-agonist, and
inhaled corticosteroid use are processed and analyzed for asthma
prediction and assessment of disease control (Figure 3). The
quality, size, and diversity of the datasets influence accuracy and
scalability to diverse patient populations. Furthermore, there are
an increasing number of stakeholders in AI, and the liability of
clinical decision software vendors and practitioners remains un-
resolved.25 Beyond asthma, many other diseases may benefit
from assistive technologies including drug allergy, IEI and
immunodysregulatory disorders, and food allergy (Table I).

Drug allergy and toxicity
The use of ML to supplement CDS for clinical applications in

real time is particularly appealing for applications such as best
practice alerts and smart order sets. CDS can be used to identify
patients at higher risk for allergic diseases and/or to predict the
optimal choice of drug as influenced by patient characteristics,
drug-drug interactions, and available formulary choice. ML
models showed superior predictive accuracy as compared with
logistic regression in predicting patients at future risk of beta-
lactam allergic reactions in adults.9,26 Some studies used pre-
dictive modeling for noneIgE-mediated side effects such as
drug-induced hepatotoxicity using molecular structure, lip-
ophilicity, and other pharmacokinetic characteristics.27,28 These
studies used published datasets available through the US Food
and Drug Administration (FDA) Adverse Reporting System, the
European Union Adverse Drug Reaction reports, and the
Observational Medical Outcomes Partnership.29 As datasets for
molecular descriptors and toxicogenomics increase, ML models
such as ANN (Figure 4) may be used to predict adverse drug
effects or risk for allergy in drug development, research,3 and
postmarketing surveillance.

AI applications to coronavirus-induced disease

immune responses

AI models were vital for synthesizing vast amounts of data
generated in the coronavirus-induced disease 2019 pandemic.
Classifying the severe acute respiratory syndrome-coronavirus 2
genome and scaling vaccine production are two of the approaches
being advanced by AI.7,30 Use of AI and data science helped
understand patterns of viral spread and which communities may
be most vulnerable.31 In addition, an unsupervised learning
approach called Tracking Responders EXpanding can charac-
terize lymphocyte subpopulations to provide early signs that
herald diagnosis and enable insights into host defense mecha-
nisms.32 Understanding immunologic and/or vaccine responses
in immunocompromised or immunodeficient patients remains
an unmet need. Some are attempting use of AI/ML for multi-
criteria decision-making to identify patients in most need of
convalescent plasma.7 ML approaches are being leveraged to
classify immune cell stress features and predict antiviral responses
for drug repurposing efforts.33,34 Lastly, ML is being coupled
with reverse vaccinology to predict viral-host protein interactions
and identify druggable targets and vaccine epitopes.35



TABLE II. Clinical and research AI applications in “omics” in allergy and immunology41-43

Data type Information generated Assay types

Clinical or research application in allergy and

immunology

Genomics Genetic sequence, to include SNPs,
rearranged TCR/BCR sequences, open
regions of chromatin, DNA methylation
status, and the microbiome

Next-generation sequencing,
microarray

Association between the methylation status
of mononuclear cells and risk of asthma
development

Transcriptomics Sequence of expressed RNA transcripts,
including mRNA and rRNA (often used in
microbiome analysis)

Next-generation sequencing,
microarray

Comparison between the skin and gut
microbiome

Proteomics Identification and quantification of proteins
in biological samples

Mass spectrometry
NMR spectroscopy
Affinity-based methods

Evaluation of serum proteins to identify
anaphylaxis phenotypes and associated
protein signatures

Lipidomics Identification and quantification of lipids in
biological samples

Mass spectrometry
NMR spectroscopy

Lipid profiles in third trimester pregnant
women and risk of infant atopic disease

Metabolomics Identification and quantification of
metabolites in biological samples

Mass spectrometry
NMR spectroscopy

Association between serum metabolites and
lung function in children with severe
asthma

Phenomics Clinical diagnoses, laboratory, and radiology
results in a format that can be queried

EHR data
Clinical laboratory, radiographic data

Identification of trends in office PFTs and
rescue inhaler use to predict likelihood of
future severe asthma exacerbations

Exposomics Exposures experienced from conception to
death. Includes diet, lifestyle, climate,
environmental, and occupational
exposures

Questionnaires, biomonitoring data
(pollution tracking), environmental
or dwelling measurements

Identification of patterns between local
particulate matter concentrations, local
elementary school ventilation systems, and
asthma exacerbations in urban areas

Cell profiling Proteins expressed on the inside and outside
of cells

Flow cytometry
Mass cytometry/CyTOF

Use of mass cytometry to identify unique
populations of cells found in milk-allergic
children but not healthy age-matched
controls

AI, Augmented intelligence; BCR, B-cell receptor; CyTOF, Cy time-of-flight; DNA, deoxyribonucleic acid; EHR, electronic health record; mRNA, messenger ribonucleic acid;
rRNA, ribosomal RNA; NMR, nuclear magnetic resonance; PFT, pulmonary function tests; SNP, single nucleotide polymorphism; TCR, T-cell receptor.
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Practice management
The practice and management of medicine is a target for

automating and improving efficient care delivery. The adminis-
trative cost and adverse effects of EHR clinical workflow have
increased9,10 and have led to clinician burnout.36,37 Although
EHRs have served regulatory, billing, and revenue needs, prior-
itizing the patient-clinician interaction and user experience are
aspects of the quadruple aim (Figure 1). Practice management
could be significantly streamlined with AI. Potential uses include
clinical order set automation13 where NLP evaluates clinical
entries to ascertain drug reactions14,15 and uses speech-to-text for
clinical documentation.38,39 More companies are developing
digital products such as “chatbots,” or automated support chat
features, for patient triage. Digital scribes employ NLP and
speech recognition with EHR integration for outpatient clinical
encounters. Other potential applications for practice manage-
ment may include AI workflows for prior authorizations, billing,
supply chain of extracts or vaccines, and optimizing patient triage
or clinic flow.39 AI could extract data from the EHR to
streamline order sets for medication prescribing, diagnostic
testing, and referrals. However, engagement of clinicians in the
development of AI tools and operationalization of AI in the EHR
will be crucial. Future research funding of AI in health care
should focus on the impact of AI on clinician workflow, physi-
cian well-being, and clinical outcomes.

Analysis of immunologic data
During the last decade, the field of Immunology has seen an

increase in the volume and complexity of biologic data that can
be generated, largely driven by advances in multiplexed tech-
nologies, imaging, and genomic sequencing.40 Frequently
referred to as multi-“omics,” these data include DNA sequence,
gene expression/RNA sequence, and assessment of proteins,
lipids, metabolites, the microbiome, and environmental/lifestyle
exposures (Table II). As each data type can capture different
attributes,44 complementary and integrated approaches for
immunological investigation can be employed. To process and
transform such large-scale, high-dimensional data into biological
and clinical insights, computational tools, including those that
apply AI and ML approaches, have been implemented in both
basic and clinical immunology.

Although the use of ML in common clinical practice is still
nascent, researchers have already successfully developed ML tools
to make significant contributions in research. So far, ML
methods have been used to analyze genomics data to understand
pathophysiology, define biomarkers, and dissect endotypes of
allergic diseases such as asthma, atopic dermatitis, and food al-
lergy (reviewed in the papers by Mersha et al41 and Ghosh
et al45). Similar approaches are being employed in clinical
immunology including use of support vector machine (SVM) for
candidate gene identification in IEI,46 and ML algorithms to
analyze high-dimensional mass cytometry data to identify
lymphocyte subpopulations for influenza vaccine response
prediction.10

As ML methods are increasing in the medical literature,
providers must understand some of their limitations. A common
pitfall is the use of data inputs of varying quality. When the data
contain artifactual variations or are not representative of
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heterogeneity in human samples, ML algorithms can misinter-
pret the dataset.47,48 Although several groups have developed AI
algorithms for flow cytometry to detect specific lymphocyte
subpopulations,47 the differential process of fluorescent labeling,
cytometer voltage selection, and gating strategies to define spe-
cific cell subpopulations are operator dependent, lack standard-
ization, and have a high degree of variability such that one cell
subpopulation may be defined differently by disparate
groups.47,48 These variations can affect model generalizability
and performance. As such, application of ML to “real-world”
biological samples requires standardizing data analysis before
broad scale implementation. Other common pitfalls are reviewed
in detail elsewhere.49

Rapid technological advances allow biological characterization
at increasingly high resolution and sensitivity. Most recently,
single cell profiling has accelerated the ability to identify and
phenotype cell types.50 For example, single-cell RNA sequencing
can identify CD4þ T cells enriched in endoscopic biopsies of
patients with active eosinophilic esophagitis (EoE) when
compared with EoE in remission.51 In addition, single molecule
array digital enzyme-linked immunosorbent assay technology
now allows ultrasensitive proteomic quantification, which has
been used to evaluate plasma concentrations of interferon-a in
patients with polygenic and monogenic interferonopathies.52

The ability to generate high-dimensional data using a variety
of modalities allows for more comprehensive biological charac-
terization. In AI, for example, the Mechanisms of the Develop-
ment of Allergy project applied ML methods to several classes of
omics data (including transcriptomics, proteomics, DNA
methylation, and genome-wide association study data) to identify
2 phenotypes of IgE-associated disease (“monosensitization” vs
“polysensitization”) and found that those with polysensitization
were more likely to have severe and persistent allergic disease53

(reviewed in the paper by Mersha et al41). However, analysis
of multiomic data requires computational and mathematical
approaches that can process and model hundreds of thousands of
measured parameters and extract those that are relevant to key
biological variables. Some of the issues that come into play
include: (1) evaluating the data for differences that arise from
batch effects; (2) adjusting for multiple comparisons; (3) data
reduction (eg, principal component analysis); and (4) deter-
mining the optimal ML model for analysis (eg, SVM or neural
network).54 Readers of studies using multiomic data should
consider these and related issues when evaluating study quality
and subsequent conclusions.

Candidate selection for clinical trials
Phenotyping of clinical notes and EHR data to identify

distinct clinical concepts became highly visible with the advent of
the federally funded Electronic Medical Records and Genomics
program55 and other efforts within the bioinformatics commu-
nity.56 Applications such as clinical research cohort selection57

and clinical phenotyping58 became early and visible applica-
tions of AI. NLP was identified as an approach for overcoming
clinical trial recruitment hurdles by using EHR data to identify
potential research participants, where classifying asthma pheno-
types8 or atopic dermatitis severity59 can enable trial recruitment.
Similarly, mining health record information in other practice
settings, such as emergency department unstructured allergy
data,60 could be a key to intelligent extraction of data across the
care continuum. In a recent publication, Seol et al61 trained and
validated a custom NLP algorithm from an Olmsted County
Birth Cohort and used predetermined asthma criteria to create an
“asthma predictive index” to distinguish patients predicted to
have asthma. Further optimizing tools such as this and devel-
oping algorithms for other disease entities could broadly improve
clinical trial candidate ascertainment.

CHALLENGES FOR AI

Data procurement and modeling

There are many potential data considerations that remain as
challenges for AI when applied to the allergy and immunology
context. The end-to-end AI development process involves
extracting appropriate data for analysis, addressing key elements
of data quality, and data provenance that is a transparent
description of where the data come from. Many have indicated
the need for a reference card, or so-called model cards,62 that
documents relevant performance characteristics and intended use
of a model. From a purely data perspective, data inputs, use
cases, and data procurement are key factors that directly impact
the models that are built. Governance of models to ensure
optimal inputs, best practice algorithmic model development (ie,
training, validation, and testing), and operationalizing the model
effectively by creating a sustainment plan for tracking longitu-
dinal performance is important. Lastly, model deployment re-
quires regulatory oversight to ensure that ethical and equity
considerations are met as well as to optimize reproducibility of
AI. The details of a granular end-to-end analytics pipeline are
beyond the scope of this article; however, we will discuss key
elements that are widely publicized and relate to concerns about
fairness and reproducibility in digital medicine.63,64

Ethics and equity implications

Ethical considerations must be considered at all stages of AI
algorithm development but are particularly important in the
stages of data procurement and model development. As AI
should enhance the health care of individuals and populations,
bias in algorithms is a critical concern. One study analyzed a
commercial prediction algorithm to guide health decisions for
US patients. Using health care utilization and spending on care,
the algorithm falsely attributed better health scores to Black
patients compared with sick White patients despite the fact that
unequal access to care and health care disparities likely resulted in
algorithmic bias.65

Patient safety and health equity using AI are crucial concerns.
Health care practitioners must incorporate informed consent
regarding diagnostic error, accountability, privacy, and cyberse-
curity considerations1 when AI technology is used in their care.
AI-enabled misdiagnosis is also a concern, particularly when
relying solely on CDS or if inaccurate data or homogeneous
populations were used to train an algorithm. Deep neural net-
works may be a “black box” for clinicians,1 and over-reliance on
AI may make it difficult to counter a clinical decision suggested
by the AI.66 Guidelines on how to override algorithms must be
considered. Similarly, there will need to be a mechanism for
reporting of safety events including misdiagnoses or inappro-
priate treatment decisions. Systems to address areas of conflict
between ML-CDS tools and clinician judgment will need to be
developed. In addition, medicolegal aspects of use of (or inability
to access) AI technology for clinicians in different practice set-
tings will need to be addressed. Engaging frontline users in the
adoption of AI will be important in future applications.
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There is substantial concern regarding health equity in AI.
Although clinicians are not immune to racial and other biases, AI
systems’ ability to achieve massive scaling means these biases
could be amplified more than by humans alone. In addition,
some clinical trials remain insufficiently diverse in their recruit-
ment67; as such, datasets may result in inadequate assessments for
underrepresented populations.66 Moreover, consideration of data
inputs (such as health care utilization) may be an ineffective
proxy for illness,65 and health inequities may be exacerbated
when bias is “baked-in” to AI algorithms.62 On the other hand,
disparities of patient experience of pain may be re-examined
using ML as was performed in a study of knee pain.68 In this
study, an algorithmic assessment of radiographic features using a
diverse patient training set showed less pain disparities by race
than the radiographic scale currently used in routine practice.
Because radiographic severity may impact when arthroplasty is
offered to patients, ML has the potential to alter future out-
comes. Clearly, both possibilities exist with AI not only having
the potential to worsen bias but also having the potential to
improve the understanding of diverse health outcomes and
improve care for historically disadvantaged patients.
AI DEPLOYMENT

AI governance
AI clinical applications will likely be accelerated by the pro-

posed regulatory framework of “Software as a Medical Device”
(SaMD).69 Here, SaMD is defined by the FDA as a medical
device platform or virtual network that is used for medical
purposes but is distinct from hardware with embedded software.
Numerous consensus documents exist related to ethical AI use.
The FDA and United Nations Children’s Fund have imple-
mented ML “best practices” and operational standards that
enable fairness in respect to the proprietary nature of the tech-
nology and mitigate bias.70,71 With this broad perspective for
both AI impact and potential for bias, governance teams must
have diverse stakeholder representation and “first do no algo-
rithmic harm” with an intent to optimally balance utility and
fairness70 in the process of assuring algorithmic equity. To
facilitate optimal development and operational practices, thought
leaders and broad stakeholder groups have begun to emerge. For
example, the Partnership on AI formed “About ML” that focuses
on transparent ML lifecycles to improve responsible scaling of
ML and define optimal ML lifecycles.72 Although the “black
box” of AI may not be fully reducible, and alternate statistical
methods may be used, the Partnership on AI is focused on
engaging multiple stakeholders to make AI more equitable.

Training and education
Currently, AI as a field is outside of the scope of standard

training and core competencies for Allergy and Immunology. In
contrast, in 2019, the American Medical Association adopted
policies to bolster incorporation of AI within medical educa-
tion.73 Specifically, curricular modifications to incorporate
educational modules and training on bias in assistive technologies
were highlighted. As technological advances occur, medical ed-
ucation will increasingly be focused on ensuring that trainees
have mentors in informatics and senior faculty members who can
contextualize AI data applications. Applying these technologies
may become important for professional development and iden-
tity formation for future allergy and immunology specialists.
AI adoption

Before adoption, AI algorithms should be rigorously validated
in the context of clinical trials. To date only one comparative
effectiveness study of an AI algorithm has been performed in the
field of allergy and immunology.74 Clinical utility, algorithmic
explainability, and interoperability should also be considered.
Safeguarding privacy of data and outlining liability concerns75

are paramount. AI dataset governance and impacts on individ-
ual patients are similar to issues frequently discussed when
considering genomic data.76 Data sharing amongst AI applica-
tions, the EHR, and other health devices along with the impact
of direct-to-consumer tools will raise further privacy and ethical
concerns. Engaging policy makers and clinicians in advocacy
efforts to establish privacy safeguards will be needed to preserve
viable and safe AI systems. Rapid adoption may cause interop-
erability problems similar to rapid EHR adoption if downstream
effects are not anticipated.77 Ultimately, the value of AI for
specific applications in allergy and immunology will influence the
degree and magnitude of AI adoption in our specialty.

Coverage and reimbursement
In 2018, the FDA granted approval to an AI device for retinal

fundus examinations.78 This device, called IDx-DR, is capable of
rapid autonomous retinal examination, can be used in areas of
specialty shortages, and could be scalable and cost-effective.79,80

Tools such as IDx-DR fall under the FDA category of break-
through device designation (BDD) as novel technology, which
have their own criteria and pathways to approval. However,
Medicare Administrative Contractors ultimately determine
coverage of BDDs according to coding, coverage, and payment
rules related to medical necessity. A BDD may be eligible for new
technology add-on payment, but this only applies to inpatient
services. In contrast, outpatient device coverage will depend on
commercial payers and provider contracts. As such, there is
considerable ambiguity about how AI may be reimbursed in a
comprehensive manner and whether these technologies will ul-
timately prove to be cost-effective. In addition, the impact of
direct-to-consumer markets on the use and adoption of AI digital
tools will influence cost for patients, clinicians, and the health
care system. Future areas of research must investigate the feasi-
bility, efficacy, and cost-effectiveness of AI implementation
within mobile health devices, remote-patient monitoring sys-
tems, the EHR, and in assessments of population health.

AI maintenance and evaluation

As clinicians find increasing use for AI tools, clinical acumen
will need to be expanded toward interpreting AI. In addition,
rigorous assessment of algorithmic explainability and reporting of
clinical and performance measures, including the population in
which the AI was trained and the standard to which the AI was
compared using one of several approaches will be important.
Checklists for manuscript writing that include minimum infor-
mation about clinical artificial intelligence modeling, “Trans-
parent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis” (TRIPOD-AI), or “Predic-
tion model Risk Of Bias ASsessment Tool” (PROBAST-AI), or
“MINimum Information for Medical AI Reporting” (MINI-
MAR) will be important and are reviewed elsewhere.81 Added
training will be needed to interpret appropriate construction of
studies using the Artificial Intelligence Consolidated Standards of
Reporting Trials (AI-CONSORT) guidance,82 and as
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technology advances algorithms evaluated to ensure that they
remain appropriate.
FUTURE DIRECTIONS

AI has the potential to impact the specialty of allergy and
immunology in the next decade. From a data procurement
perspective, advances in data systems, EHR design, and recog-
nition of relevant inputs (eg, pollen identification83,84 and
epitope maps) hold promise for AI-based improvements. As
routinely generated medical and genetic data are captured and
stored more thoughtfully within EHRs, more reliable data
acquisition and subsequent model development using evidence-
based and best-practice algorithm training and validation will
be possible. AI can be used for pathology and radiology relevant
applications to improve care for patients with allergic and
immunologic disorders.85-87 In addition, postmarket surveillance
of outcomes and consideration of ethical factor impact on health
care disparities will be required. Fundamentally, involvement and
training of allergy and immunology physicians to be stewards in
the design, development, and implementation of AI will be
important to define best practice use for optimal patient
outcomes.
CONCLUSIONS AND RECOMMENDATIONS
This AAAAI workgroup report highlights the potential clinical

implementation of AI in allergy and immunology to improve
individual and population-wide health. This report serves as a
high-level framework for conceptualizing AI for the practicing
clinician. Limitations of this report include the inability to
describe at length the process of data procurement, and model
development that would help inform the practical considerations
outlined throughout. Many aspects such as data quality, algo-
rithm sharing and explainability, partnering with developers,
facilitating data science competency in allergy and immunology
training programs, use of AI in quality improvement, and vali-
dation of theoretical models are not discussed in sufficient depth
for the experienced reader. Similarly, how and when to use AI or
how to develop AI falls outside of the scope of this workgroup
report. It should be noted that AI will not be the best fit for all
data applications. In some cases, data scientists may determine
that a rigorous statistical approach is more appropriate than an
ML/AI approach, for example, when a high degree of accuracy is
desired, for small datasets, or when there are a limited numbers
of variables.88 Furthermore, assuring equity dimensions and
potential impact of AI on health disparities is key, and we only
scratched the surface in describing some potential impacts in this
workgroup report. Future impact analyses of AI on clinician
workflow, health care consults, and health disparities are needed.
There are several concrete recommendations that can be made as
AI continues to mature and evolve:

� Engage frontline clinicians and health care systems in devel-
oping AI systems that are cost-effective, and abide by privacy
and legal standards.

� Allergy and immunology specialists should be involved in the
design, validation, and implementation of AI in Allergy and
Immunology.

� Partnerships with various stakeholders including but not
limited to local health system informaticists, clinicians, pa-
tients, data scientists, and health information technology
professionals will be needed as AI in allergy and immunology
is deployed.

� Payers and policy makers will have important inputs into
applications of future AI.

� Clinicians engaging with AI should become trained in these
domains, to optimally advance AI for allergy and immunology
applications and patient care.
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