Health disparities in allergic and immunologic conditions in racial and ethnic underserved populations: A Work Group Report of the AAAAI Committee on the Underserved

Carla M. Davis, MD, FAAAAI,a,b Andrea J. Apter, MD, MA, MSc, FAAAAI,c Adrian Casillas, MD, FAAAAI,d Michael B. Fogg, MD, FAAAAI,e Marjue Louisiais, MD,1 Elsie C. Morris, MD,9 Anil Nanda, MD, FAAAAI,1,h,j Michael R. Nelson, MD, PhD, FAAAAI,k Princess U. Ogbogu, MD, FAAAAI,l Michael B. Foggs, MD, FAAAAI,e Margee Louisiais, MD,1 Elsie C. Morris, MD,9 Anil Nanda, MD, FAAAAI,1,h,j Cheryl Lynn Walker-McGill, MD, MBA, FAAAAI,m,n Julie Wang, MD, FAAAAI,o and Tamara T. Perry, MD,p,q

Houston, El Paso, Lewisville, Flower Mound, and Dallas, Tex; Philadelphia, Pa; Chicago, Ill; Boston, Mass; Tucker, Ga; Bethesda, Md; Cleveland Ohio; Charlotte, NC; New York, NY; and Little Rock, Ark

Health disparities are health differences linked with economic, social, and environmental disadvantage. They adversely affect groups that have systematically experienced greater social or economic obstacles to health. Renewed efforts are needed to reduce health disparities in the United States, highlighted by the disparate impact on racial minorities during the coronavirus pandemic. Institutional or systemic patterns of racism are promoted and legitimated through accepted societal standards, and organizational processes within the field of medicine, and contribute to health disparities. Herein, we review current evidence regarding health disparities in allergic rhinitis, asthma, atopic dermatitis, food allergy, drug allergy, and primary immune deficiency disease in racial and ethnic underserved populations. Best practices to address these disparities are to be taken into account in any diagnosis and treatment plan. The statement reflects clinical and scientific advances as of the date of publication and is subject to change.

From aBaylor College of Medicine, Houston; bTexas Children’s Hospital Food Allergy Program, Texas Children’s Hospital, Houston; cPerelman School of Medicine of the University of Pennsylvania, Philadelphia; dTexas Tech Health Sciences Center, Sierra Providence Medical Partners, El Paso; eAdvocate Medical Group, Advocate Aurora Health Clinic, Chicago; fBoston Children’s Hospital, Harvard Medical School, Brigham and Women’s Hospital, Boston; gAllergy, Asthma and Immunology, Tucker; hthe Asthma and Allergy Center, Lewisville; ithe Asthma and Allergy Center, Flower Mound; jthe University of Texas Southwestern Medical Center, Dallas; kthe Allergy-Immunology Service, Walter Reed National Military Medical Center, Bethesda; lthe Case Western Reserve University-Rainbow Babies and Children/UH Cleveland Medical Center, Cleveland; mCarolina Complete Health, Charlotte; nWingate University Graduate School of Business, Charlotte; oElliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York; and pthe University of Arkansas for Medical Sciences and qArkansas Children’s Research Institute, Little Rock.

Disclosure of potential conflict of interest: C. M. Davis receives research grant support from the National Institutes of Health/National Institute of Allergy and Infectious Diseases (UM2 AI30836, U301 AI126614, R01 AI135197, U54 AI117804), DBV Technologies, Aimmune Therapeutics, Nutricia North America, Regeneron Pharmaceuticals, and the Scurlock Foundation and is a consultant for Moonlight Therapeutics. A. J. Apter receives research grant support from National Institutes of Health/National Heart, Lung, and Blood Institute and Patient-Centered Outcomes Research Institute; consults for UpToDate; and is a member of the editorial board of the Journal of Allergy and Clinical Immunology. M. B. Fogg serves on the advisory boards for Boehringer Ingelheim and Sanofi/Regeneron and is a consultant for AstraZeneca. M. R. Nelson is president of the American Board of Allergy & Immunology and a Board member and Oversight Task Force member of the American Board of Medical Specialties. P. U. Ogbogu serves on the advisory boards for AstraZeneca and GlaxoSmithKline. C. L. Walker-McGill is chair of the Board of the Federation of State Medical Boards. J. Wang receives research grant support from the National Institutes of Health/National Institute of Allergy and Infectious Disease, Aimmune, DBV Technologies, and Regeneron; is a consultant for Insignis Therapeutics and Genentech; served on the advisory board for DBV Technologies; is a member of the data monitoring committee for ALK Abello; and is an UpToDate author. The rest of the authors declare that they have no relevant conflicts of interest.

Received for publication September 17, 2020; revised February 13, 2021; accepted for publication February 18, 2021. Available online March 10, 2021.

Corresponding author: Carla M. Davis, MD, 1102 Bates Ave, MC 330.01, Houston TX, 77030. E-mail: carlad@bcm.edu.

The CrossMark symbol notifies online readers when updates have been made to the article such as errata or minor corrections.

© 2021 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. https://doi.org/10.1016/j.jaci.2021.02.034

For reference only.
Health disparities are defined as health differences linked with economic, social, and environmental disadvantage. They adversely affect groups that have systematically experienced greater social or economic obstacles to health based on race, ethnicity, religion, socioeconomic status (SES), sex, age, disability, sexual orientation, and/or geographic location, causing health inequities. Health disparities and inequities (see Fig 1) are inextricably linked with social determinants of health, conditions in the environments in which people are born, live, learn, work, play, worship, which affect a wide range of health, functioning, and quality-of-life (QOL) outcomes and risks (see Fig 2). These social determinants of health can negatively impact the delivery of medical care, and addressing social determinants of health is key to achieving health equity, defined by Healthy People 2020 as attainment of the highest level of health for all people (see Figs 1 and 2).

Renewed efforts are needed to reduce health disparities in the United States, highlighted by the disparate impact on racial minorities during the recent coronavirus pandemic. Institutional or systemic patterns of racism are promoted and legitimated through accepted societal standards and organizational processes within the field of medicine and contribute to health disparities. As a structured system, racism interacts with other social institutions, such as political, legal, and economic institutions. Dynamic and interdependent are societal systems, including the housing market, the education system, the labor market, the criminal justice system, credit markets, the economy, and the health care system. The interaction of these institutions and subsystems creates unequal access to resources and opportunity, resulting in racial inequities in health. Reducing inequities in health requires dismantling these patterns and systems of racism. Addressing health disparities requires a multilevel approach involving patients, health providers, local agencies, professional societies, and national governmental agencies. Because disparities so greatly affect the field of allergy/immunology, greater emphasis must be placed toward addressing the changing needs of the specialty and patients served. This is a crucial task to improve the equity of the care that our specialty provides.

Almost 2 decades ago, inspired by the Institute of Medicine report titled “Unequal Treatment,” the American Academy of Allergy, Asthma & Immunology participated in a Commission to End Health Disparities with the National Medical Association and the National Hispanic Medical Association. In 2009, Apter and Casillas’ wrote an editorial outlining how poverty, race, and health disparities were being addressed in allergy/immunology care and research. Unfortunately, current evidence in the United States shows a lack of progress in the past decade in the quest to reduce disparities. Herein, we describe current evidence regarding health disparities in the United States shows a lack of progress in the past decade in the quest to reduce disparities.

METHODS
This workgroup report is a narrative review. All authors performed a narrative review of the literature through PubMed, with a search strategy focused on the topic of health care disparities for each disease topic. The authors chose to include the highest quality evidence available for each topic. The review was performed without time frame restrictions. The only exclusion criterion was non-English publications. Many of the references herein are single-center studies, and the limitations of these studies should be considered in the assessment of the strength of the evidence. Because most studies in this narrative review address health disparities in the United States, the operealization of the mitigating strategies may differ in other countries.

DISPARITIES IN AR
What is known?
As guidelines are evolving to improve care for patients with AR, it is still underdiagnosed and underappreciated in certain racial and ethnic populations. AR prevalence among racial minorities reveals variability in self-reported disease. According to the 2017 National Health Information Survey, self-reported history of “hay fever” was 5% in black children, 5% in Hispanic children, compared with 9% in white children.

Key words: Health disparities, allergic rhinitis, asthma, atopic dermatitis, primary immunodeficiency, drug allergy, food allergy, coronavirus disease 2019

Abbreviations used
AD: Atopic dermatitis
AIT: Allergen immunotherapy
aOR: Adjusted OR
AR: Allergic rhinitis
ED: Emergency department
FA: Food allergy
MUD: Matched unrelated donor
OR: Odds ratio
PIDD: Primary immune deficiency disease
QOL: Quality of life
SES: Socioeconomic status
When prevalence rates are examined in urban or low-income cohorts, underdiagnosis is evident, especially in patients with asthma. Studies of urban populations of school-age children with persistent asthma demonstrate AR prevalence rates between 54% and 85%, indicating AR as a significant comorbidity among children with asthma. However, AR is not being readily addressed or diagnosed in underserved children with uncontrolled asthma. In Project Nocturnal Asthma and Performance in School, an urban cohort of children with uncontrolled asthma, 53% of AR participants were newly diagnosed at the clinic study visit, thought to be linked to physician underestimation of the impact of AR on patient daytime functioning and low awareness of guideline recommendations. Implicit bias could be contributory to this underrecognition of AR.

Sensitization to several allergens is a contributor to the burden of disease. When identified, black children without a personal or family history of atopy had a higher odds of sensitization to any allergen as well as discrete sensitization to mold, cockroach, grass, weed, and tree pollen compared with white children. More recently, mouse allergy has been shown to be a concern in urban areas. In the Mouse Allergy and Asthma Intervention Trial, active rhinitis and mouse-specific IgE were significantly associated in children with persistent asthma. Therefore, addressing the presence of mold, cockroaches, and mouse droppings in the homes of at-risk populations is important.

Latino populations are also significantly affected by AR with underdiagnosis in Puerto Rican and urban populations. An analysis of Florida Medicaid claims data from 1997 to 2004 found Hispanic children at 16% higher odds of AR diagnosis compared with white children, and 52% higher odds of an AR diagnosis compared with black children. The Asthma Phenotypes in the Inner City study identified racial and ethnic differences in AR phenotypes in urban low-income populations. The lack of similar findings in higher income populations suggests poverty may be a significant driver of these disparities.

AR is known to have significant impact on QOL and morbidity in underserved populations. On the basis of Pediatric Rhinocconjunctivitis Quality of Life Questionnaire, Everhart et al found that urban-dwelling Hispanic and black children had poorer AR-related QOL compared with urban-dwelling non-Hispanic white children. The higher scores in Hispanic/black children equal more impairment of QOL. Among a cohort of adult patients with chronic rhinosinusitis, black and Hispanic race were associated with a significantly higher odds of obstructive sleep apnea, compared with white race even after adjustment for age, sex, and body mass index (odds ratio [OR], 1.98 [95% CI, 1.19-3.29]; OR, 1.43 [95% CI, 0.67-3.04]). AR control (measured by the Rhinitis Control Assessment Test) was noted to be associated with fewer school absences in an urban school-age cohort with asthma.

What has been done?

Clinical studies have demonstrated that low-income and minority groups are less likely to receive allergen immunotherapy (AIT), and Medicaid insurance is associated with more emergency room care for acute nasal symptoms compared to private insurance. Administration of AIT to appropriate patients with AR, including low-income patients, is associated with reduced health care use and cost savings. A secondary analysis of urban school-age children with persistent asthma showed that AR was
underdiagnosed in half the patients and undertreated, with only one-third using appropriate treatment and only 16% of participants being treated with an intranasal corticosteroid. Sixty-percent should have been using this treatment according to guidelines. Differences in AIT treatment duration for AR vary in differing populations, with the possibility that unique cultural values may be responsible for the variation. In a Florida Medicaid population, the mean duration of AIT was 17 months, where approximately 40% received AIT for less than 6 months. Hispanic children were more than 2 times more likely to receive AIT compared with black and white children but received the shortest duration of treatment compared with white (mean of 429 days vs 613 days) and black (429 days vs 593 days) children. Hispanic children were also 1.5 times more likely to discontinue AIT within 2 years compared with white children. In an urban tertiary care setting, a retrospective review of nearly 200 patients’ adherence to AIT based on insurance and SES between 2003 and 2016 revealed that payer status was significantly predictive of missed doses (P = .02). Medicaid patients missed the most (34.2%), followed by Medicare (24.4%), commercial insurance (19.9%), and a “Health Safety Network” in Massachusetts (18.5%; P ≤ .02).

These studies highlight that additional burdens faced by lower income families can contribute to a lack of resources necessary to adhere to AIT rigorous schedules. Limited resources and a lack of work flexibility can contribute to the inability to adhere to frequent appointments, pay for transportation to visits, and obtain child care. The above studies suggest that adherence could be improved when medical resources are provided to increase access to specialty care in underserved communities through reimbursement for transportation, child care, and community health care worker services.

What needs to be done?

There is a critical need for increased access to AR care. Improved availability of treatment resources within the communities is an important part of the solution. Strong relationships with community organizations, schools, faith-based organizations and/or community health workers who could improve medication adherence and office visit follow-up, and community primary care providers who could administer immunotherapy would improve access to these resources.

Focused observational and interventional studies addressing AR diagnosis, management, and outcomes for underserved populations are also important. Racial and ethnic minorities are underrepresented in US studies. All underserved populations should be considered for all future cohort studies. As treatment options expand, it is increasingly important to study outcomes in underserved populations to assist in identifying treatment strategies. Interventional studies are needed in underserved populations. AR contributes to the morbidity of sleep disruption/obstructive sleep apnea, asthma, and other conditions, so including AR outcomes in clinical trials of other conditions will improve our understanding of this common disease. In addition, a plan for access for continued care once studies are completed is important for long-term outcomes.

DISPARITIES IN ASTHMA

What is known?

Asthma is a serious public health problem, especially in minority and underserved communities, and the burden of asthma in the United States remains high. Asthma prevalence has been increasing since the early 1980s in all age, sex, and racial groups. This is a long-term problem, and the gap has only grown wider with time. Asthma morbidity (hospitalizations, emergency department [ED] visits) remains at higher rates in underserved populations for reasons discussed below. Despite this fact, according to the Centers for Disease Control and Prevention, asthma episodes defined as an asthma attack in the past 12 months, have declined in children from all races and ethnicities from 2001 to 2016.

Asthma prevalence is higher among persons with family income below the poverty level. The practice of racial segregation, economic oppression, and systemic racism has contributed to poor housing conditions and increased air pollution exposure known to exacerbate asthma in low-income communities. Black people in the United States have higher asthma mortality rates than do other races or ethnicities. Asthma is more prevalent in black and American Indian adults than adults of other races or ethnicities. Black people are 3 times more likely to be hospitalized from asthma. In young black children, the asthma mortality disparity appears to be heightened. From 2007 to 2009, the death rate for black children 14 years or younger was approximately 8 times greater than for white children in that age group. Moreover, ED and urgent care center visits are highest among black children younger than 4 years. Children with high mortality risk, including history of intensive care unit admission, are twice as likely to live in extreme poverty, have atopy (particularly mouse allergy), use combination controller therapy, and overuse albuterol.

A number of factors have contributed to poor asthma outcomes in impoverished, minority populations. The Centers for Disease Control and Prevention reported that 34.8% of children and 50% of adults with asthma are uncontrolled as defined by US guidelines. Suboptimal prescribing and/or use of appropriate asthma clinical practice guideline–based controller therapy have been well documented in inner-city children with asthma, resulting in increased morbidity and mortality in this high-risk population. Some data suggest that childhood SES relates to the pathophysiology of asthma. Lower familial assets (family savings, investments, etc) in a diverse population of 50% nonwhite children are associated with larger PBMC Th1, Th2, and proinflammatory cytokine responses after ex vivo stimulation with phorbol 12-myristate 13-acetate/ionomycin, as well as less sensitivity to glucocorticoid inhibition of Th1 and Th2 cytokine production.

What has been done?

There have been various behavioral, educational, and asthma management programs designed specifically for minorities with development and refinement of school-based, institutions of faith, and community asthma education and management programs, including web-based telemedicine interventions. Although school-based asthma awareness and medical management interventions have been shown to positively impact asthma outcomes, lack of effective communication between primary care providers and school nurses, limited access to school nurses, and lack of reliable information on asthma-related absenteeism and health services utilization persist. In the future, collaboration between primary care providers, school nurses and other personnel, parents or guardians, payers, and policymakers...
need to help us understand the true impact of school-based interventions on clinical and cost outcomes of asthma.

National, state, and local policy changes are essential. On the national level, recent approval for reimbursement of school-based health care services allows for children to receive treatment at schools. School-based health care may help to improve asthma outcomes. Multicomponent medical and behavioral intervention program delivered by video-based telehealth has been shown to significantly improve asthma outcomes in underserved populations, with improvement in daytime and nighttime symptoms, exacerbations, and adherence. The school system can be supportive in reinforcing key messages in the asthma action and medical treatment plan. Several studies have tested the effectiveness of having the child take their asthma controller medications in school. Community health workers or school nurses should be a part of an asthma care team in a circle of support. Congress bill House of Representatives 2468 establishes preferences for grants under the children’s asthma treatment program for states that require schools to establish allergy and asthma management programs that include individual action plans for students diagnosed with allergies or asthma. Asthma management plans, emergency treatment plans, individualized asthma action plans, and school environmental asthma plans are provided through the School-based Asthma, Allergy & Anaphylaxis Management Program (https://www.aaaai.org/sampro) website.

Environmental injustice from pollution in North America was well documented by the 2018 The Lancet Commission on Pollution and Health, resulting in recurrent racial and ethnic disparities. In the New York City Harlem neighborhood, almost all diesel bus depots, places where buses idle their engines for hours while emitting pollutants, are in minority, mostly disadvantaged neighborhoods. These places have a disproportionately increased prevalence of asthma and other respiratory diseases.

Environmental control of dust mite, cockroach, mold, and mouse allergen has been an important intervention to reduce exposure to asthma triggers. Various programs have been implemented to reduce allergen and pollutant exposures in homes. Some of these programs include testing for allergen sensitization and identification of potential asthma triggers. There have been several interventions to improve patients’ homes. Community health workers who win the trust and confidence of patients have been used to successfully deliver interventions. There are now projects underway improving the structural soundness of homes and coordinate participation of all settings in management of asthma: home, school, community, and primary care.

Other interventions in racial and ethnic minority groups that are effective include teledmedicine or web-based self-care, multidisciplinary team education in the community and hospital settings, and home health care visits using community health workers. These interventions may decrease utilization of health care resources because patients are empowered to participate in their own asthma management.

Shared decision making is another helpful tool explored in black populations with asthma, with the observation that adequate health literacy is a key component to effective shared decision making. A novel shared decision-making interventional randomized trial (BRief Evaluation of Asthma Therapy) delivered in a real-world setting to address erroneous disease and medication beliefs as a means of improving asthma control in black adults has been started using motivational interviewing, a patient-centered counseling approach that elicits behavioral change by engaging patients in collaborative partnerships, focusing on connecting behavior to outcomes, evoking the individual’s internal motivation to change, and planning a course of action. These kinds of studies will be critical to document efficacy of specific interventional methods.

What needs to be done?

“Best practice” community programs such as the School-based Asthma Management Program (www.aaaai.org/SAMPRO) should be established and implemented to improve access to quality care and develop collaborations with community health resources and schools. There is clear evidence at the population level that use of asthma-preventive medications (ie, inhaled corticosteroids) and adherence to asthma prescriptions are lower in black versus white patients. This is hypothesized to stem from negative beliefs about inhaled corticosteroids, a preference for complementary and alternative medicine approaches, rising costs of inhaled corticosteroids, and the effects of rebranding generic to brand-label molecules in use for decades through different delivery devices. Facilitation of appropriate use of controller medications coupled with adherence monitoring and timely referral to an asthma specialist is needed to help reduce the disparities in asthma outcomes. Evaluation of patient social determinants of health, such as the physical environment including the place of residence, crowding conditions, and built environment (ie, buildings, spaces, transportation systems), along with implementation of greenspaces to encourage healthy behavior, is needed. Collaborative programs between medical agencies, specialty national associations, and federal programs offering governmental support should be established.

Advancing the concept that there are population differences in drug response and recognizing that there may also be multiethnic and socioeconomic differences in biologic agent response may help eliminate imprecise prescribing practices that may keep some patients from receiving the right drug or biologic. This approach is fraught with challenges, including rising costs of drugs, which is transferred to the patient. Effective drugs in subpopulations are likely to be more expensive and, therefore, unavailable to low socioeconomic populations, even those who are insured. Availability of allergy/immunology specialists who see Medicaid patients and can prescribe biologic agents will be important. To mitigate the disparities in asthma care, Medicaid reimbursement should be increased.

Because asthma racial disparities are not likely to be fully explained by nongenetic factors alone, large-scale genetic and epigenetic studies of asthma in African ancestry populations may be helpful. Given that race is a social construct and there is great genetic diversity among populations that crosses over racial lines, studies to determine the contribution of genetic ancestry to disease burden would bring further understanding. Large-scale genome-wide association studies will be necessary to benefit from building polygenic risk scores for asthma. As precision medicine evolves, it is imperative to incorporate into asthma prescribing practices knowledge about the following: environmental influences, coexisting conditions, genomic predispositions, drug-drug interactions, and accurate indicators of drug response.

The Institute of Medicine recommendations to address racial and ethnic disparities in health care include correction of sources of racial and ethnic disparities in the clinical care encounter at the patient and system level, given black patients...
are hospitalized more often than white patients for asthma and are more likely to receive inadequate therapy despite higher rates of health care visits.6 Race-adjusted algorithms that guide clinical decision making in ways that may direct more attention or resources to white patients than to members of racial and ethnic minorities should be reexamined. To correct asthma disparities, we must correct the lack of reimbursement for current clinical encounters, especially as it relates to the time spent in asthma education, because this is an impediment to ideal care. Use of community health workers/asthma educators could be performed in the community setting. Maximizing the use of available asthma medications before considering the more-expensive alternatives (including improved methods to enhance adherence to conventional therapy)67-69 and ensuring access to mobile technology for the implementation of telemedicine in homes, clinics, and schools would help.68,70-72 Telemedicine will be particularly beneficial in rural, underserved communities because 94% of the population has broadband access, but ensuring reliable access to racial and ethnic minority groups in rural areas will be necessary. In urban settings, because indoor allergen and pollutant triggers in the built environment can exacerbate asthma, home visits can be an important adjunct to the medical evaluation.69 In academic, private, and institutional health system settings, cross-cultural education to reduce provider bias is crucial.7 More interventional studies such as the BRief Evaluation of Asthma Therapy study will be instrumental in the future to help inform efforts to correct asthma disparities and inequities.

DISPARITIES IN AD
What is known?
In the US AD population,73,74 a higher persistence and prevalence of AD among female and black children in urban areas exist,75,76 but there are limited studies addressing disparities among patients with AD.77 One study looked at 78 clinical trials from 2000 to 2009 for prevention, treatment, or management of AD, and only 46 (59%) included information on race and ethnicity.78 Only 10.3% of the studies reporting race and ethnicity factored these demographic characteristics into interpretation of the results.79 Despite increased recommendations for more inclusion of minorities and demographic descriptions in health care studies, there has been no increase in such reporting with AD.80

Studies have demonstrated a higher prevalence as well as higher severity and more impaired QOL in AD among black adults and children.73,79 Black and Asian children are seen for office encounters for AD at a higher frequency than white children.80 Other demographic characteristics associated with increased risk of childhood AD include urban setting, health insurance status, smaller family size, and single-mother household.81,82,83 Genes encoding for the skin structural protein, filaggrin, are associated with skin barrier defects in many patients with AD.84 Filaggrin mutations appear to be less common in black patients compared with white patients; however, their effect on the persistence of AD is similar.82,84 In addition, differences in skin Staphylococcal aureus colonization may differ in various ethnic populations.85

AD classically presents with pruritic erythematous plaques with scale on flexor surfaces.81,84 Black patients are less likely to have flexural dermatitis and more commonly present with extensor dermatitis.81 Perifollicular prominence and distinct papules on trunk and extensors also tend to be more common in patients of African descent.82 A lichen-planus–type presentation of AD has been reported in black patients, and Dennie-Morgan lines, diffuse xerosis, periorbital dark circles, prurigo nodularis, and palmar hyperlinearity are commonly seen in this group.81,86 Erythema in black patients may not be as well appreciated, and common scoring systems may underestimate the severity of AD.81

Health care education may be insufficient with regard to treatment of dermatologic conditions, including AD in minorities.80 Less than 40% of residents in primary care believed their medical school curriculum adequately trained them to manage common skin conditions, and 47% of dermatologists reported their medical training was inadequate in preparing them to manage skin conditions in black patients.80 These findings highlight the need to expose primary care, allergy/immunology, and dermatology residents to a diverse patient population as well as provide them with the didactics, textbooks, and peer-reviewed literature necessary to prepare them to address special considerations in skin of color to prevent disparities in quality of care. Other complicating factors include distrust in medical research and reduced access to allergy/immunology, primary care, and dermatology specialists.80,85

What has been and needs to be done?
There is a paucity of interventional studies in AD, so effective strategies in other atopic disease should be implemented for AD.85 Improving access to health care, potentially by telemedicine, has tremendous potential.89,90 Additional postgraduate medical training on AD, specifically in underserved populations, could improve access to care. Addressing these issues represents an opportunity for allergists/immunologists to help alleviate these barriers to AD care in underserved populations.

DISPARITIES IN FA
What is known?
Although it is widely suspected that there are significant racial and ethnic disparities in FA care, the data that we have to assess this are exceptionally limited by indirect diagnosis and lack studies in which cases are validated by the use of oral food challenge. Through self-report data, disparities in FA are predominantly seen among minority and lower income populations in the United States. Data suggest increasing FA prevalence, with rates up to 8% to 10% depending on age, geography, and criteria used to define FA.90,91 with disproportionate increases among different ethnic/racial groups. The drivers of increased prevalence need better characterization and might include lack of awareness of FA and/or access to health care, racial/ethnic or socioeconomic influences on childhood feeding practices, or environmental exposures.90 In a nationally representative cross-sectional survey of caregiver-reported FA, black (adjusted OR [aOR], 1.8 [1.6-2.1]) and Asian (aOR, 1.4 [1.2-1.7]) children had significantly higher odds of reported FA compared with white children.92 Caregiver-reported FA was significantly lower among children in households with incomes less than $50,000 versus $50,000 or higher (aOR, 0.5 [0.4-0.7]).92 Another study93 highlighted the fastest increase in self-reported FA among non-Hispanic black adults between 1988 and 2011 (2.1% increase per decade; 95% CI, 1.5%-2.7%) compared with 1.2% for Hispanic adults and 1.0% for non-Hispanic white adults. Similarly, FA prevalence
<table>
<thead>
<tr>
<th>Condition</th>
<th>Current knowledge of health disparities</th>
<th>Proven interventions for health disparities</th>
<th>Future interventions needed for health disparities</th>
</tr>
</thead>
</table>
| **AR** | 1. AR is underdiagnosed in patients with asthma 15
2. Allergen sensitization is higher in black children and AR is higher in Hispanic children with asthma compared with whites 14,17,19
3. Cockroach and mouse allergens are contributor to disease burden 15,17
4. Nasal microbiome composition differs among racial/ethnic groups 23
5. Poor QOL is associated with AR in underserved populations 24 | 1. Treatment with intranasal corticosteroid for chronic disease improves outcomes 13
2. AIT in low-income patients is associated with reduced health care use and cost savings 14 | 1. Lower out-of-pocket costs for AIT, especially for Medicaid-insured patients
2. Improve access to specialty care in underserved communities
3. Culturally sensitive education on disease for patients should be provided
4. Increased research studies addressing AR diagnosis, management, and outcomes for underserved populations |
| **Asthma** | 1. Asthma prevalence has been increasing and morbidity is high in underserved populations 27
2. Racial/ethnic differences in asthma frequency, asthma morbidity, and mortality are directly connected to poverty, indoor and outdoor air quality, indoor and outdoor allergens, suboptimal patient education, and poor health care 7
3. Blacks and Hispanics, especially Puerto Ricans, are more likely than whites to have higher mortality from asthma 7
4. Children with high mortality risk, including history of intensive care unit admission, are twice as likely to live in extreme poverty, have atopy (particularly mouse allergen), use combination controller therapy, and overuse albuterol 14
5. Suboptimal prescribing and/or use of controller therapy has been well documented in inner-city children with asthma, resulting in increased morbidity and mortality in this high-risk population 7 | 1. School-based asthma awareness and medical management interventions have been shown as positively impacting asthma outcomes. 13
2. Environmental control interventions have been implemented to reduce exposure to asthma triggers 14,17,48
3. Telemedicine or web-based self-care 30
4. Community health workers who win the trust and confidence of patients have been used to successfully deliver education and interventions 9,52
5. A shared decision-making interventional randomized trial has been started 14 | 1. More community programs should be established to improve access to care, especially for high-risk individuals
2. Facilitation of appropriate use of controller medications and adherence monitoring
3. Increase allergy/immunology specialists who see Medicaid patients and can prescribe biologic agents
4. Initiate large-scale genetic studies of asthma in African ancestry populations
5. Address health care system contribution to disparities by providing time in clinical encounters for asthma education and implement telemedicine in patient-convenient settings
6. Give health care provider training with cross-cultural education to reduce implicit bias
7. Culturally sensitive education on disease for patients should be provided |
| **AD** | 1. There is a higher persistence and prevalence of AD among female and black children in urban areas 5,76
2. Higher prevalence as well as higher severity and more impaired QOL in AD exists among blacks compared with whites 7,59
3. Black and Asian children are seen for office encounters for AD at a higher frequency than white children 10
4. Increased risk of childhood AD is associated with urban setting, health insurance status, smaller family size, and single-mother household 60,55
5. Common scoring systems may underestimate the severity of AD in black patients 61
6. Because AD presents differently in ethnic and racial populations, health care education should include consideration of skin color 62 | 1. The differences in AD in varying racial/ethnic groups and skin color have been reported 17
2. Tele-dermatology is effective in low-resource settings with a multilingual tele-expertise platform increasing access 18 | 1. Provide additional postgraduate medical training on AD, specifically in underserved populations
2. Improve access to health care through telemedicine, and community and social workers
3. Implement culturally competent patient education efforts and collaborative patient-clinician decision-making process to improve patient trust in medical research and health care 56
4. Collaboration with pediatric colleagues to increase referrals of difficult-to-manage patients |

(Continued)
<table>
<thead>
<tr>
<th>Condition</th>
<th>Current knowledge of health disparities</th>
<th>Proven interventions for health disparities</th>
<th>Future interventions needed for health disparities</th>
</tr>
</thead>
</table>
| **FA** | 1. Disparities in FA are predominately seen among minority and lower income populations in the United States, with higher rates of FA-related anaphylaxis and ED visits [92,93,97,100].
 2. In a birth cohort study, no differences in IgE-mediated FA were noted when considering multiple foods; however, a higher proportion of black children were designated as having peanut allergy, black children were 3 times more likely than nonblack children to have peanut-IgE >95% predictive decision point, and race/ethnicity was associated with sensitization to more than 1 of the food allergens [93,96].
 3. Black children have higher odds of wheat, soy, corn, fish, and shellfish allergy, and Hispanic children have higher odds of corn, fish, and shellfish allergy [97].
 4. In New York City, physician-diagnosed FA was significantly higher (17.5%) among private school respondents compared with public school respondents (7.4%) [98].
 5. The prevalence of physician-diagnosed FA in urban minority children was 3.4%, significantly lower than reported national estimates [99]. | 1. Disparities in FA management have been documented, with black and Hispanic parents less likely to correctly identify signs of FA reactions and less likely to identify food triggers [101].
 2. Food insecurity has been established as a risk factor in milk and egg allergy and is associated with lower health literacy [103].
 3. Underdiagnosis and/or gaps in management of FA among minority, low-income, and rural children exist [104,105].
 4. Education for school nurses about FA increased the availability of epinephrine autoinjectors, so this may be a way to improve management of food-allergic disease in schools [105]. | 1. FA education should occur through allergy specialists in partnership with primary care clinicians, patient advocacy groups, and other stakeholders in high-risk communities [109].
 2. Food insecurity should be addressed during visits in patients with FA.
 3. FA action plans and epinephrine autoinjectors should be supplied for all patients with FA regardless of race, ethnicity, or geographical location.
 4. Culturally sensitive education on disease for patients should be provided. |
| **Drug allergy** | 1. Drug allergy identification in the medical record was missed in a larger proportion of minority groups who lacked English proficiency compared with whites (62%; P < .001) [11].
 2. In urban settings, 41% of the black population had discrepancy between self-report of drug reactions and the EMR documentation [12].
 3. Risk factors for fatal drug anaphylaxis include black race and older age [13,14].
 4. In US hospitalizations from 2009 to 2013, Asians and blacks had a substantially higher risk of Stevens-Johnson syndrome and toxic epidermal necrolysis in the context of urate-lowering drug adverse events than whites (or Hispanics), with genetic predisposition explaining the difference [13].
 5. Black African/Caribbean Americans can have a 3 to 4 times higher incidence of ACE inhibitor angioedema than white patients [17]. | 1. Risk of hospitalizations for allopurinol-associated severe cutaneous reactions is higher among blacks, Asians, Native Hawaiians/Pacific- Islanders, and older women, with resultant current recommendations to initiate allopurinol at a low dose (≤100 mg/d) [15].
 2. Disparities in allergy documentation, fatal anaphylaxis, and drug-induced adverse severe cutaneous reactions have been documented | 1. Interpreters and coordination of the electronic health record systems are potential solutions to decrease the number of fatal anaphylaxis episodes.
 2. Knowledge of vulnerable populations treated with allopurinol and low-dose drug initiation should reduce disparities in reactions and improve the current state of drug allergy health inequity.
 3. Clinicians should be aware of ACE-induced angioedema in black patients and discontinue the medication promptly with occurrence.
 4. Partnering with hospitalists and ED clinicians to increase referrals to the allergist for evaluation of drug allergies in underserved populations. |
for adults is higher among all ethnic/racial groups other than white.93 Even among FA-associated disease such as eosinophilic esophagitis, there is evidence of increasing prevalence of disease over time. Overall, evidence suggests that black patients with eosinophilic esophagitis may be underdiagnosed given less typical symptoms and more subtle or absent endoscopic findings.94

Accurate prevalence rates are challenging to estimate because rates vary depending on criteria used to diagnose FA. A systematic review75 reported increased adjusted odds of FA among black populations, but noted that differing criteria used to diagnose FA precluded identification of a definitive racial/ethnic disparity. In a birth cohort study,96 no significant differences in IgE-mediated FA were noted when considering multiple foods; however, a higher proportion of black children were designated as having peanut allergy, black children were 3 times more likely than nonblack children to have peanut-IgE higher than 95% predictive decision point, and race/ethnicity was associated with sensitization to more than 1 of the food allergens (aOR, 1.80; 95% CI, 1.22-2.65; P = .003).97 In addition, food allergens differ across races/ethnicities. In a study that required convincing symptoms (cutaneous, respiratory, gastrointestinal, or systemic) of an IgE-mediated reaction to a specific food and either an elevated serum-specific IgE or a positive skin test result to that specific food(s) for the diagnosis of FA,98 compared with white children, black children have higher odds of wheat, soy, corn, fish, and shellfish allergy and Hispanic children have higher odds of corn, fish, and shellfish allergy.

Disparities are also seen when assessing physician-diagnosed FA. A cross-sectional study compared 2 private and 2 public charter schools in New York City, NY, that differed in racial/ethnic composition and SES, with more black and lower income children in public charter schools.99 Physician-diagnosed FA was significantly higher (17.5%) among private school respondents compared with public school respondents (7.4%). Even among those with a history of severe reaction to food, nearly half the children in the public schools lacked a physician diagnosis. In a study of urban minority children, prevalence of physician-diagnosed FA was 3.4%, which is significantly lower than reported national estimates.100 These findings suggest underdiagnosis and/or inadequate access to specialty care for FA for some. Disparities in FA management also exist. Minority children are less likely to have prescribed FA action plans,100 have a shorter duration of specialist follow-up, and have higher rates of FA-related anaphylaxis and ED visits.95 Another study reported that children in the lowest income stratum incurred 2.5 times more costs associated with ED visits and hospitalizations.101 Families with lower income spend significantly less on specialty visits and out-of-pocket preventive measures (medications and special foods) as compared with higher income children. Disparities in parental FA knowledge have been identified, which may influence behaviors. Black and Hispanic parents were found less likely to correctly identify signs of FA reactions and less likely to identify triggers.102 Lower health literacy correlates with lower educational attainment and poverty where people of color are overrepresented and is associated with knowledge gaps related to

TABLE I. (Continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Current knowledge of health disparities</th>
<th>Proven interventions for health disparities</th>
<th>Future interventions needed for health disparities</th>
</tr>
</thead>
</table>
| PIDD | 1. The prevalence of any PIDD diagnosis noted through administrative health care databases is highest in privately insured patients118
2. B-cell defects predominate PIDD diagnosis, and prevalence of any PIDD is >2× as high in whites as in blacks or Hispanics, a pattern observed for all diagnosis groups except neutrophil defects119-122
3. Several studies of PIDD diagnoses in urban clinical settings have reported underrepresentation of PIDD among minorities138,139,144
4. When a scoring algorithm on the basis of ICD-9 codes to identify all hospitalized patients age ≤60 y with a diagnosis of ≥2 of 174 ICD-9-coded complications associated with immunodeficiency was used, 61% were insured by Medicaid, disproportionately higher than the general inpatient population (P < .0001), and 86% of immunodeficient subjects were Hispanic or black, identifying an undiagnosed cohort134
5. Southern Europeans received 8/8 URD transplants (41%) at rates similar to those of Asians (34%) and white Hispanics (35%); Africans were the least likely (18%) to undergo 8/8 URD transplantation | 1. Race/ethnicity have been reported in a few epidemiologic studies of PIDD
2. Bone marrow transplantation registry participation of diverse populations has been encouraged through public awareness campaigns | 1. Various strategies and efforts to diversify the bone marrow donor pool are needed to improve the odds of a match in disadvantaged patients with PIDD
2. Use of cord blood donors could extend the availability of curative therapy to ethnic minorities128
3. Registries should report the prevalence of specific PIDDs by race/ethnicity
4. Nonbiased methods of identifying PIDDs, such as EMR algorithms, should be implemented to identify potential immunodeficient patients from underserved populations |

ACE, Angiotensin-converting enzyme; EMR, electronic medical record; ICD-9, International Classification of Disease, Ninth Revision; SAMPRO, School-based Asthma, Allergy & Anaphylaxis Management Program; URD, unrelated donor.
TABLE II. Recommendations for patients, physicians, payers, communities, and government agencies to impact social determinants of health and health disparities in allergic and immunologic conditions in racial and ethnic underserved populations

<table>
<thead>
<tr>
<th>Event</th>
<th>Action</th>
</tr>
</thead>
</table>
| Individual patient | 1. Communicate openly with health care providers about needs, cultural differences, and social network dynamics that affect family decisions
2. Obtain a primary care physician to coordinate medical care
3. Request educational resources on disease and treatment
4. Share with health care providers challenges and barriers to care
5. Join patient advocacy groups that are addressing disparities
6. Advocate for government representatives to enact policy changes to increase insurance coverage and reimbursement rates for specialty care and treatments |
| Physicians | 1. Identify and engage with community organizations/health care community workers/nurses/schools/faith-based organizations to partner for the development of team-based care to improve access to and coordination of care for underserved groups
2. Recruit and hire diverse patient-facing faculty and staff
3. Identify systemic and other barriers to care for underserved populations in your practice/institution and develop strategies to address them
4. Engage in implicit bias and cultural competency training to increase self-awareness, because 70% of physicians have an implicit preference for whites over blacks, which affects medical decision making, communication, and nonverbal behavior
5. Screening for social determinants of health (SDOH) should be provided with a nonbiased approach and addressed in office visits (https://www.aafp.org/journals/fpm/blogs/inpractice/entry/social_determinants.html). Give patient education about SDOH and provide clinical care resources to address them; re: social service resources such as auntbertha (www.findhelp.org) and 211 (www.211.org)
6. Culturally sensitive education on disease for patients should be provided
7. Interventions should address the entire spectrum of health care treatment from prevention and primary care to specialty care, hospitalization, and postdischarge treatment
8. Measure the durability of intervention effects over time
9. Join and advocate through medical societies and lay organizations for policy change in insurance coverage for underserved communities
10. Engage trainees from minority communities for training and mentoring opportunities |
| Communities | 1. Adopt the School-based Asthma, Allergy & Anaphylaxis Management Program (https://www.aaaai.org/sampro)
2. Provide resources within the local communities, such as fresh food markets, smoking cessation, exercise and nutrition classes, and free support groups that can be suggested to patients by medical providers
3. Build partnerships between health systems and community-based organizations to offer social services and education
4. Schools and faith-based organizations partner with health care facilities to provide education and access to medical care in the school setting (ie, educational sessions, telemedicine visits, and community health worker or nurse medication administration)
5. Provide health care forums and meetings for community members to express concerns and community health care needs to inform health care providers, systems, payers, and legislators |
| Medical organizations | 1. Optimize the use of data sources and health information technology to improve access of underserved groups to medical care
3. Provide implicit bias training and cultural competency workshops for free at organizational meetings and in ongoing educational programs
4. Advocate for health professionals’ communication skills and cultural competence (reducing the impact of biases against underserved groups) as a critical component of all training programs
5. Leaders should focus on equity as an essential element in quality improvement
6. Research funding opportunities should be provided to address health disparities to discover underlying scientific and socially driven mechanisms
7. Advocate for removal of race-adjusted algorithms that guide clinical decision making in ways that may direct more attention or resources to white patients than to members of racial and ethnic minorities
8. Implement programs to diversify the health care workforce through a Task Force or other policy-making committees
9. Provide community health worker training for providers that want to participate in community health initiatives
10. Promote inclusivity in disease guideline development
11. Incentivize physicians and practices to care for underserved communities through reputational incentives (ie, awards) and social incentives (eg, matching donations to charity for charity care)
12. Educational institutions should develop policies to recruit and retain minorities for education and completion of training in allergy/immunology specialties
13. Diversify leadership in all levels of the organization
14. Support an antiracist policy agenda at the local, state, and national levels |
| Insurance/payers | 1. Increase Medicaid and Medicare reimbursement rate comparable to other payers
2. Increase focus and coverage for healthy behaviors linked to improved outcomes
3. Reimburse for physician education costs and time
4. Increase coverage and decrease barriers to receipt of effective medications and therapies, such as biologic mAbs and immunotherapy |

(Continued)
management of allergic reactions and epinephrine autoinjector use. Food insecurity is a risk factor in milk and egg allergy and was associated with lower health literacy.

Disparities in FA emergency preparedness in schools disproportionately affect low-income, rural, and minority children. Lack of epinephrine availability and anaphylaxis training is more prevalent in rural and low-income schools. In a cross-sectional online survey of Illinois school nurses/aides representing more than 1000 schools, rural schools were least likely to have any undesignated epinephrine available to treat severe allergic reactions compared with urban and suburban schools and least likely to have a written plan or protocol to outline staff procedures in the event of a severe allergic reaction (59.4% at rural schools vs 81.7% suburban vs 71.9% urban). Rural schools were also least likely to report undesignated epinephrine policies (35.6% rural, 47.5% suburban, 64.0% urban schools). In a cross-sectional study of elementary school nurses (n = 170), higher SES schools were 6 times more likely to have epinephrine autoinjectors available, even when accounting for the number of students with FA. Fewer epinephrine autoinjectors in schools were associated with higher prevalence of Hispanic children and limited English proficiency in low-SES schools. In a school nurse survey in 3 Massachusetts school districts, white children were 5 times more likely to have been dispensed epinephrine autoinjectors compared with nonwhite children for peanut or tree nut allergy (OR, 4.5). Collectively, these studies highlight significant under-diagnosis and/or gaps in management of FA among minority, low-income, and rural children. Education for nurses about FA increased the availability of epinephrine autoinjectors, so this may be a way to improve management of food-allergic disease.

DISPARITIES IN DRUG ALLERGY

What is known?

Drug allergy treatment is ultimately dependent on accurate documentation. The rate of documentation discrepancies has been evaluated during hospitalizations and ED visits. Drug allergy identification in the medical record was missed in a large proportion of minority groups who lacked English proficiency (62.5%) compared with white patients (12%) (P < .001). This was true for all classes of drugs, including cephalosporin, aspirin, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, penicillin, and sulfonamides. Asian and Hispanic subjects did not have the same level of allergy ascertainment as white patients when admitted into the hospital. In the urban ED setting, in a prospective observational study, there was a discrepancy among 41% of the black population between self-report of allergy/adverse drug reaction and the electronic medical record documentation, with omissions being a more frequent discrepancy. Only 18% of patients had a full complete allergy record and 6% were given a medication in the ED that could have caused an adverse drug reaction. This indicates a need for better attentiveness in taking and documenting a medication allergy in disadvantaged communities.

There are disparities in US mortality rate for fatal drug anaphylaxis. Risk factors include black race and older age (P < .001) according to data obtained from the Vital Statistics of the National Center for Health Statistics Multiple Cause of Death Data from 1999 to 2010. Higher rates of drug anaphylaxis were observed with increasing age and in black people: 0.05 (95% CI, 0.04-0.07) per million among 19 years or younger versus 1.28 (95% CI, 1.09-1.50) per million among people 80 years or older, and 0.54 (95% CI, 0.47-0.61) per million in black people, with 0.19 per million (95% CI, 0.15-0.23) in Hispanic people and 0.45 per million (95% CI, 0.43-0.48) in white people (P < .001).

Severe non–IgE-mediated reactions are also disproportionately experienced in ethnic populations, where there may be evidence of genetic predisposition explaining the difference. The HLA-B*5801 allele is differentially expressed in various racial populations and is a determinant of the allopurinol
hypothesis: In US hospitalizations from 2009 to 2013, Asian and black patients had a substantially higher risk of Stevens-Johnson syndrome and toxic epidermal necrolysis in the context of urate-lowering drug adverse events than white (or Hispanic) patients, correlating well with corresponding frequencies of HLA-B*5801 in the US population (ie, 7.4%, 4%, 1%, and 1%, respectively).116 The hospitalization rate ratios for Stevens-Johnson syndrome/toxic epidermal necrolysis among Asian, black, and white patients were 11.9, 5.0, and 1.0, respectively. Allopurinol as a urate-lowering drug should be used with vigilance in minority populations.117 Risk of hospitalizations for allopurinol-associated severe cutaneous reactions is higher among black, Asian, and Native Hawaiians/Pacific-Islander adults, and older women, with resultant current recommendations to initiate allopurinol at a low dose (<100 mg/day)116,117. In addition, the incidence of angiotensin-converting enzyme inhibitor–induced angioedema is higher among black adult patients. Black African/Caribbean Americans can have a 3 to 4 times higher incidence of angiotensin-converting enzyme inhibitor–induced angioedema than white patients.118

What has been or needs to be done?

Disparities in allergy documentation, fatal anaphylaxis, and drug-induced adverse severe cutaneous reactions warrant proactive measures to protect vulnerable patients. Interpreters and coordination of the electronic health record systems are potential solutions to decrease the number of fatal anaphylaxis episodes. Increased educational time for minority populations may also impact disease morbidity. Knowledge of vulnerable populations treated with allopurinol and low-dose drug initiation should reduce disparities in reactions and improve the current state of drug allergy inequity. Clinicians should be aware of angiotensin-converting enzyme inhibitor–induced angioedema in black patients and discontinue the medication promptly with occurrence. Partnering with hospitalists and ED clinicians to increase referrals to the allergist for evaluation of drug allergies is another strategy to increase the care in underserved populations.

DISPARITIES IN PIDD

What is known?

When administrative health care databases were used to estimate the prevalence of PIDD diagnoses in the United States in 2007, the prevalence of any PIDD diagnosis was 5.1/10,000 persons, with higher prevalence in privately insured.119 This prevalence has increased with time to 9.6 to 11.7/10,000 persons, possibly due to the identification of more genetically defined PIDDs. B-cell defects predominate, and prevalence of any PIDD is more than twice as high in white as in black or Hispanic patients, a pattern observed for all diagnosis groups except neutrophil defects.119-122 Some genetically homogeneous populations have an increased prevalence of specific PIDD (eg, Artemis severe combined immunodeficiency in Navajo Native Americans), but few registries have reported prevalence of specific PIDD (eg, X-linked agammaglobulinemia, hyper-IgM, and chronic granulomatous disease) by race.120,121

Underdiagnoses among black and Hispanic populations as a result of barriers to health care or diagnostic bias can occur. Several studies of PIDD diagnoses in urban clinical settings have reported underrepresentation of PIDD among minorities.119,124,125 The recent approval of newborn screening in the United States will help identify patients with T-cell defects in a less biased fashion, but disparities may exist in more subtle immunodysregulatory disorders and non-T-cell–mediated diseases. When a scoring algorithm was used on the basis of International Classification of Disease, Ninth Revision codes to identify all hospitalized patients 60 years or younger with a diagnosis of 2 or more of 174 International Classification of Disease, Ninth Revision–coded complications associated with immunodeficiency, 0.4% of all inpatients were identified and these patients had a median age of 6.6 years. Sixty-one percent were insured by Medicaid, disproportionately higher than the general inpatient population (\(P < .0001\)), and 86% of immunodeficient subjects were Hispanic or black, identifying an undiagnosed cohort of minority patients with immunodeficiency.125

What has been or needs to be done?

Further study is needed to identify possible impediments to diagnosis. Hematopoetic cell transfusion is a potential curative treatment for many PIDDs, but minority populations frequently encounter barriers in accessing this life-saving therapy. In a prospective study of 8/8 HLA-allele matched unrelated donors (MUDs) between 2005 and 2017, a marked racial disparity in MUD access was identified. Southern European patients received 8/8 unrelated donor transplants (41%) at rates similar to those of Asian (34%) and white Hispanic (35%) patients; African patients were the least likely (18%) to undergo 8/8 unrelated donor transplantation. This disparity persisted despite increased bone marrow registry participation, implicating other methods are necessary to improve access to transplantation in minority populations.126,127 In a cohort of PIDDs referred for hematopoetic cell transfusion at the National Institutes of Health, where donor options included matched sibling donors or matched related donors, HLA-haploidentical, or 7-8/8 HLA MUDs, the donor searches for those of non-European ancestry compared with European ancestry were less favorable (\(P = .002\)).128 Most patients of Hispanic or African ancestry had very poor/futile MUD searches (71% and 63%, respectively).129 Efforts to diversify the bone marrow donor pool are needed to improve the odds of a match in disadvantaged patients with PIDD. In addition, use of cord blood donors could extend the availability of curative therapy to ethnic and racial minorities.129

DISPARITIES IN THE CORONAVIRUS DISEASE 2019 PANDEMIC

The coronavirus disease 2019 pandemic has disproportionately affected underserved populations, and the adverse impact has been linked to the SES of patients and asthma characteristics, rather than health behaviors or patient attitudes. Minority patients are more likely to have lost health insurance due to unemployment and live in communities with a high prevalence of coronavirus disease 2019 cases, resulting in decreased access to care and increased challenges in care.130 Vaccine administration has been hindered by lack of access. There is a need to educate patients regarding vaccine safety and address myths to mitigate inequities. The economic impact of systemic and institutional racism, implicit bias, and discrimination has played a significant role.131 Addressing these economic factors through community
resources (Table II) will be essential to the effort to reduce disparities.

CONCLUSIONS

Health disparities affect all aspects of health care especially with regard to access, delivery, and outcomes. Despite improvement in health of the US population over time, disparities persist. Addressing this problem involves equipping all under-served populations to facilitate their individual ability to achieve the highest level of health. This report illustrates the impact of racial and ethnic disparities in AR, asthma, AD, FA, drug allergy, and PIDD and serves as a call to action to address these disparities.

Addressing gaps in health care and developing innovative solutions to narrow these gaps are paramount. Although these challenges are of significant magnitude, providers in the specialty of allergy/immunology are well equipped to rise to the challenge and poised to be leaders in addressing health disparities and achieving health equity. Commitment is necessary to implement the actions that will make a difference.

We thank Drs Melody Carter, Russell Tomar, John Carlson, Maboobeh Mahdavinia, and Deidre Crocker for careful review of this manuscript and Megan Brown from the American Academy of Allergy, Asthma & Immunology for administrative assistance.

REFERENCES

33. CDC.gov. CDC – Asthma – Most recent asthma data. 2019 Available at: https://www.cdc.gov/asthma/most_recent_data.htm. Accessed May 9, 2019.
38. Bryant-Stephens T, Karian C, Guo R, Zhao H. Impact of a household environmental intervention delivered by lay health workers on asthma symptom control

