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Asthma is a common disorder that in 2009 afflicted 8.2% of
adults and children, 24.6 million persons, in the United States.
In patients with moderate and severe persistent asthma, there is
significantly increased morbidity, use of health care support,
and health care costs. Epidemiologic studies in the United States
and Europe have associated mold sensitivity, particularly to
Alternaria alternata and Cladosporium herbarum, with the
development, persistence, and severity of asthma. In addition,
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sensitivity to Aspergillus fumigatus has been associated with
severe persistent asthma in adults. Allergic bronchopulmonary
aspergillosis (ABPA) is caused by A fumigatus and is
characterized by exacerbations of asthma, recurrent transient
chest radiographic infiltrates, coughing up thick mucus plugs,
peripheral and pulmonary eosinophilia, and increased total
serum IgE and fungus-specific IgE levels, especially during
exacerbation. The airways appear to be chronically or
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Abbreviations used

ABPA: Allergic bronchopulmonary aspergillosis

ABPM: Allergic bronchopulmonary mycosis

CF: Cystic fibrosis

IL-4RA: IL-4 receptor a chain

ITGB3: Integrin b3

IUIS: International Union of Immunological Societies

MBL: Mannose-binding lectin

PAR: Protease-activated receptor

SAFS: Severe asthma with fungal sensitivity

sIgE: Specific IgE

SNP: Single nucleotide polymorphism

SPT: Skin prick test

TLR: Toll-like receptor
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intermittently colonized by A fumigatus in patients with ABPA.
ABPA is the most common form of allergic bronchopulmonary
mycosis (ABPM); other fungi, including Candida, Penicillium,
and Curvularia species, are implicated. The characteristics of
ABPM include severe asthma, eosinophilia, markedly increased
total IgE and specific IgE levels, bronchiectasis, and mold
colonization of the airways. The term severe asthma associated
with fungal sensitization (SAFS) has been coined to illustrate the
high rate of fungal sensitivity in patients with persistent severe
asthma and improvement with antifungal treatment. The
immunopathology of ABPA, ABPM, and SAFS is incompletely
understood. Genetic risks identified in patients with ABPA
include HLA association and certain TH2-prominent and cystic
fibrosis variants, but these have not been studied in patients with
ABPM and SAFS. Oral corticosteroid and antifungal therapies
appear to be partially successful in patients with ABPA.
However, the role of antifungal and immunomodulating
therapies in patients with ABPA, ABPM, and SAFS requires
additional larger studies. (J Allergy Clin Immunol
2012;129:280-91.)

Key words: Allergic bronchopulmonary aspergillosis, allergic bron-
chopulmonary mycosis, Aspergillus fumigatus, Alternaria alternata,
Cladosporium herbarum, severe asthma with fungal sensitivity

Discuss this article on the JACI Journal Club blog: www.jaci-
online.blogspot.com.

Asthma is a common disorder that in 2009 afflicted 8.2% of
adults and children, 24.6 million persons, in the United States.1

Sensitization to fungi is an important factor in patients with aller-
gic respiratory tract diseases, playing a major role in the develop-
ment, persistence, and severity of lower airway disease,
particularly asthma. Direct associations between increased fungal
exposure and loss of asthma control are numerous,2 but only re-
cently have direct causal associations with the development of
asthma become apparent. Arbes et al3 demonstrated that Alter-
naria alternata is independently associated with asthma. Jaakkola
et al4 showed that fungal sensitivity, particularly to Aspergillus
and Cladosporium species, increases the risk of adult-onset
asthma. Harley et al5 found that children exposed to basidiospores
and ascospores in the first 3 years of life had an increased risk of
asthma.
Fungal sensitization might also contribute to the persistence of

active symptoms of asthma. In a large survey of US housing, Salo
et al6 reported that exposure to A alternata antigens correlated
with active asthma symptoms. Stern et al7 showed that sensitiza-
tion to Alternaria species at age 6 years correlated with persistent
asthma at age 22 years (odds ratio, 7.4). Sensitization to Alter-
naria and other species has been associated with severe and po-
tentially fatal episodes of asthma.2,8,9 Epidemics of asthma
caused by increased airborne Alternaria spores that occur during
thunderstorms further illustrate this association.10
PREVALENCE OF FUNGAL SENSITIVITY
The precise prevalence of fungal sensitivity is unclear. The

National Health and Nutrition Examination Survey III study11 re-
ported that among US citizens aged 6 to 59 years, 12.9% have
positive skin prick test (SPT) responses to Alternaria species,
whereas in another US study 21% of 102 atopic subjects had
positive skin test results to 1 or more fungal allergens.12 In Euro-
pean studies 78% of 824 Spanish patients with allergic respiratory
symptoms had positive SPT responses toAlternaria species.13 Al-
though various studies report that 12% to 42% of atopic patients
are mold sensitive,13-16 others are as high as 80%.17 Newer diag-
nostic approaches, such as fungal enzyme microarrays,18 fluores-
cent halogen immunoassays,19 and other approaches, might allow
for a more accurate assessment of fungal sensitization.
DEVELOPMENT OF SENSITIZATION
Sensitization arises from a combination of genetic factors and

exposure. Sensitization to Alternaria species has been associated
with increased risk of maternal sensitization in patients’ offspring
to this allergen, although the risk of asthma is unknown.20 Envi-
ronmental exposure to fungi occurs both indoors and outdoors.
A recent study showed that in fungus-sensitized asthmatic chil-
dren, outdoor mold exposure rather than indoor mold exposure
was linked with asthma exacerbations.21 Nevertheless, other stud-
ies report an association between indoor mold exposures and
lower airway symptoms. A Finnish cohort study reported a corre-
lation between visible mold growth in homes and wheezing epi-
sodes in children.22 Bundy et al23 demonstrated that indoor
Penicillium species levels correlated with peak expiratory flow
rate variability in asthmatic children.
Allergic rhinitis and asthma both have been associated with

exposure to fungal contamination in homes.24A quantitativemeta-
analysis of 33 epidemiologic studies showed an increase of 30% to
50% in adverse respiratory health outcomes in occupants because
of dampness andmold exposure.25Recent reviews from theUnited
States,26 Europe,27 and the World Health Organization28 affirm
that a damp indoor environment is a factor in asthma development.
Fungi in water-damaged homes of asthmatic children have been
found to differ from fungi in control homes without visible water
damage. The dominant fungi in the dust of water-damaged homes
fluctuated with the geographic location.29-31
ROLE OF CLIMATE CHANGE IN FUNGUS-RELATED

RESPIRATORY TRACT DISEASES
Further factors that might influence the frequency of fungal

sensitization and lower respiratory tract disease in the future are
the effects of global climate change.30,31 There is growing evi-
dence of the effect of climate change on other aeroallergens, in-
cluding mold sporulation.32-36 The plant response to increasing

http://www.jaci-online.blogspot.com
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TABLE I. Taxonomic distribution of allergenic fungi

Kingdom Chromista Ascomycota

(continued)

Phylum Basidiomycota

Phylum Oomycota Drechslera Agaricus

Phytophthora Epicoccum Calvatia

Plasmopara Erysiphe Cantharellus

Eurotium Cyathus

Kingdom Fungi Fusarium Ganoderma

Phylum Ascomycota Gliocladium Geastrum

Acremonium Helminthosporium Lentinus

Alternaria Monilia Pleurotus

Aspergillus Nigrospora Polyporus

Aureobasidium Neurospora Psilocybe

Botryotrichum Paecilomyces Puccinia

Botrytis Penicillium Rhodotorula

Candida Phoma Serpula

Cephalosporium Pyrenochaeta Sporotrichum

Chaetomium Saccharomyces Tilletia

Chrysosporium Scopulariopsis Urocystis

Cladosporium Stachybotrys Ustilago

Claviceps Stemphylium Wallemia

Coniosporium Torula Xylobolus

Curvularia Trichoderma

Cylindrocarpon Trichophyton Phylum Zygomycota

Daldinia Ulocladium Mucor

Didymella Rhizopus
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CO2 concentrations includes greater biomass and a greater car-
bon/nitrogen ratio of plant tissues; thus fungi growing on plant
materials encounter changes in substrate. When grown on plant
material in higher CO2 environments, A alternata exhibits in-
creased spore production, as well as increased antigen levels
per plant.37 Lake and Wade38 demonstrated an acceleration of
pathogenic plant fungal growth in increased CO2 environments;
increasing CO2 concentrations from 400 to 800 ppm increased es-
tablished mycelia colonies by 40%. Increases in regional temper-
ature at 2 sites in the United Kingdom over a 27-year period
correlated with an increased number of days in which Cladospo-
rium species spore counts exceeded 4000/m3.39 In a prospective
study of patients with mild-to-moderate asthma (60% atopic), a
positive relationship was established between high basidiospore
levels and asthma symptom scores, with a modest but significant
risk ratio of 1.19. Days with high basidiospore levels also
correlated with nocturnal awakening and increased medication
use.40 Studies directly linking increases in CO2 concentrations
with increases in fungi formation and sporulation are limited.
Klironomos et al41,42 demonstrated a 4-fold increase in airborne
fungal spores in response to increasing CO2 concentration.
Thus climate change joins the ranks of potential contributing fac-
tors to the increase in the prevalence and severity of respiratory
disease.
FUNGI ASSOCIATED WITH LOWER AIRWAY

ALLERGY
Aerobiological studies have shown the majority of fungal

spores in outdoor air to be from the phyla Ascomycota and
Basidiomycota (Table I).43 The most commonly studied aller-
genic fungi are conidia-producing anamorphs of ascomycetes,
such as Alternaria, Aspergillus, Botrytis, Cladosporium, Epicoc-
cum, Fusarium, and Penicillium species. Asexually produced co-
nidia represent 30% to 60% of the spores present in outdoor air,
the remainder being comprised mostly of teleomorphic (sexual)
spores of the Ascomycota and Basidiomycota, which are referred
to as ascospores and basidiospores, respectively. Studies have
suggested that the prevalence of hypersensitivity to basidiospores
and conidial allergens might be comparable, although little is
known about the allergenicity of ascospores.43 Exposure to air-
borne fungi can occur in both outdoor and indoor environments.
Spores are usually present in outdoor air throughout the year, fre-
quently exceeding the pollen population by 100- to 1000-fold or
more, depending on environmental factors, such as water, nutri-
ents, temperature, and wind.44,45 Spores and fungal fragments
found indoors originate from fungi present outdoors and from
fungi that might have grown inside the buildings on moist
surfaces.46,47

Precipitation is required for the discharge of basidiospores,
with concentrations increasing during and after rainstorms.48 The
resultant airborne concentrations of actively wet spores discharg-
ing Basidiomycota is correlated with relative humidity rather than
precipitation with minimal effect of wind speed on airborne spore
counts.49 During extended periods of rainfall, productivity might
become a limiting factor, with re-establishment of spore concen-
trations dependent on replenishment of spores. Rainfall can also
dislodge spores from surfaces, an effect heightened with larger
raindrops.49,50

Many airborne conidia (asexual spores) are from fungal plant
pathogens, and the mechanism responsible for spore release is not
known for all; however, light might be an important factor in
spore discharge.50 The duration of sporulation is largely deter-
mined by temperature, humidity, and moisture, partly explaining
why fungal spore counts are subject to seasonal periodicity.51

Alternatively, dry discharged spores from fungi, such as Alter-
naria, Aspergillus, Cladosporium, and Penicillium species, are
mostly emitted when dry, warm, and windy conditions prevail.49

Wind velocity required for detachment varies between fungi.50,52

A minimum of 1.0 m/s is required for detachment of Cladospo-
rium species, and 0.5 m/s is required for Aspergillus and Penicil-
lium species.51,52 Dry discharged spores are easily dispersed and
can be carried long distances by the wind. Nonspherical spores
fall slower and therefore have the potential to be carried farther
by the wind than spherical spores, and similarly, spores released
in clusters will fall faster than single spores.50,52 In general, higher
wind speed and drier air result in enhanced spore liberation.
Aspergillus fumigatus and related species are distributed

widely in the environment.53 Aspergillus and Penicillium species
are closely related genera, the spores of which cannot be readily
distinguished in studies relying solely on microscopy. They are
present in outdoor air and are also considered major indoor
fungi.54 They are often present in the outdoor air throughout the
year, although they might show seasonal fluctuations dependent
on geographic region. In the United Kingdom they are the domi-
nant spore type in the air in autumn and winter, but levels reach
their peak in the autumn,55 with levels higher outdoors during
the day.56

Penicillium species are prevalent indoor fungi.43 Inhalation of
Penicillium species spores in quantities comparablewith those en-
countered by natural exposure can induce both immediate and late
asthma in sensitive persons. Among more than 100 known Peni-
cillium species, Penicillium citrinum, Penicillium chrysogenum
(Penicillium notatum), Penicillium oxalicum, Penicillium brevi-
compactum, and Penicillium spinulosum, are considered the
most common.
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Cladosporium species spores are released during both wet and
dry conditions and dispersed by rain splash. Spore release is de-
pendent on fluctuations in humidity triggered particularly by
rapid decreases in humidity.57 Outdoor counts tend to be higher
in warmer weather and during thunderstorms.58 Cladosporium
species spores occur abundantly worldwide and are the dominant
airborne spores in many areas, especially in temperate climates.59

Cladosporium herbarum frequently dominates indoor and out-
door air and is a major source of inhalant allergens.60

Alternaria species exhibits diurnal periodicity, with counts
peaking during daylight hours.49 Sporulation is induced by light
rain or heavy dew, with sudden humidity changes stimulating re-
lease.61,62 Although rainfall is required for sporulation, airborne
levels are shown to decrease with precipitation.63 Intermittent
rainfall is more beneficial in the formation and dispersal of Alter-
naria species spores.63 Temperature also affects concentrations,
with counts higher in warmer weather.58 Harvesting increases
the concentration of airborne Alternaria species spores because
of dislodgement from leaves.63 Both intact and fragmented spores
are observed in air samples during periods of harvest, which is
likely problematic for allergic patients because the particles
will be of more inhalable size and internal allergens will be ex-
posed.10,63 Alternaria species is a predominant outdoor fungus
but has been reported in house dust samples.64

Another fungal spore of interest with regard to asthma and
allergy is Didymella species, which is often observed in routine
counts during the summer months, particularly during rainfall.
Didymella species concentrations have been associated with
asthma morbidity after thunderstorms65 and positively correlate
with humidity, with temperature being less important. Under fa-
vorable meteorological conditions, concentrations can reach ex-
plosive peaks of up to 30,000 spores/m3 air.66

FUNGAL ALLERGENS
Most fungi possess multiple and diverse allergens. Some are

metabolic products secreted outside the organism; others are
cytoplasmic and structural components released on lysis or autol-
ysis of the fungal cell. On the basis of the catalog of fungal allergens
approved by the Allergen Nomenclature Sub-committee of the
InternationalUnion of Immunological Societies (IUIS),67 allergens
that are fully characterized are listed in Table II. This listing in-
cludes isoallergens and variants from 25 fungal species belonging
to the Ascomycota and Basidiomycota phyla. Intergenus and inter-
species allergenic cross-reactivitymust be distinguished from indi-
vidual sensitization to multiple fungi. IgE-binding allergens of A
fumigatus, Penicillium species, A alternata, and C herbarum
have been obtained by using molecular cloning techniques.68-74

Genomic analysis of Aspergillus species and homology compari-
sons with allergen sequences from other fungi have identified a
core set of allergen-like proteins occurring across fungi. The
IUIS listing includes 30 allergens from 5 species of Aspergillus
(Table II), including proteins, polysaccharides and glycoproteins,
and enzymes, including chymotrypsins, proteases, elastase, ribonu-
cleases, catalases, and superoxide dismutases.53,75 The most com-
monly encountered species associatedwith allergy areA fumigatus,
Aspergillus niger, Aspergillus oryzae, Aspergillus flavus, and As-
pergillus terreus. Several of these enzymes have been attributed
to the pathogenesis of Aspergillus species–induced diseases.
A number of these antigens demonstrate reactivity with specific
IgE and IgG antibodies in patients with allergic bronchopulmonary
aspergillosis (ABPA).53,74-76 Polysaccharide fractions from the cell
wall and cytoplasm also showed reactivity with sera of patients
with ABPA. However, these allergens frequently show cross-
reactivity with other fungal antigens.74 Twelve antigens fromP cit-
rinum and 11 antigens from P chrysogenum have been shown to
react with IgE from patients’ sera by means of immunoblotting.77

Sixteen Penicillium species allergens have also been characterized
from 4 species (Table II). Ten allergens (Table II) have been char-
acterized inCladosporium species, 8 fromCherbarum.47Only one
of the 10 allergens is a fungal conidial allergen (Cla h HCh-1); the
remainder are hyphal. Allergenic cross-reactivity between Clado-
sporium cladosporioides, C herbarum, and Cladosporium sphaer-
ospermum has been reported.78 Alternaria species possess both
mycelial and metabolic antigens capable of causing allergy. The
IUIS database recognizes 9 Alternaria species allergens, of which
Alt a 1 is the most significant (Table II). Major fungal allergens,
such as Asp f 1 and Alt a 1, are unique and have not been found
to share sequence homology with any other known allergen.79
ALLERGIC FUNGAL LUNG DISEASES

ABPA and related conditions
First described in 1952, ABPA is commonly caused by A fumi-

gatus, an ubiquitous mold common indoors and frequently found
around farm buildings and compost heaps.80-85 ABPA is charac-
terized by exacerbations of asthma, recurrent transient chest ra-
diographic infiltrates, and peripheral and pulmonary
eosinophilia, especially during an exacerbation. ABPA is a TH2
hypersensitivity lung disease caused by bronchial colonization
with A fumigatus that affects approximately 0.7% to 3.5% of asth-
matic patients and 7% to 9% of patients with cystic fibrosis
(CF).80-85 The diagnosis of ABPA is based on clinical and immu-
nologic reactivity to A fumigatus. The minimal criteria required
for the diagnosis of ABPA are as follows: (1) asthma or CF
with deterioration of lung function, (2) immediate Aspergillus
species skin test reactivity, (3) total serum IgE level of 1000 ng/
mL (416 IU/mL) or greater, (4) increased Aspergillus species–
specific IgE and IgG antibodies, and (5) chest radiographic infil-
trates. Additional criteria might include peripheral blood eosino-
philia, Aspergillus species serum precipitating antibodies, central
bronchiectasis, and Aspergillus species–containing mucus
plugs.80-85 Designation of ABPA-seropositive (ABPA-S) can be
used to classify asthmatic patients who meet required criteria
but lack proximal or central bronchiectasis (ABPA-CB). High-
resolution computed tomography can demonstrate central bron-
chiectasis in the inner two thirds of the field, even in the absence
of chest radiographic lesions.86 PCR for detecting Aspergillus
species in sputum is more sensitive than culture in ABPA but
needs to be interpreted with other clinical and laboratory fea-
tures.87 At the time of radiographic exacerbation, the presence
of sputum or blood eosinophilia is suggestive of ABPA, especially
if the total IgE concentration has increased compared with base-
line concentrations. Plasma levels of thymus and activation-
regulated chemokines (CCL17) might be a better marker for
ABPA than IgE levels, especially for exacerbations.88

ABPA is the most common form of allergic bronchopulmonary
mycosis (ABPM). Other fungi, including Candida, Penicillium,
and Curvularia species, are occasionally responsible for a similar
syndrome.83 Recently, L€otvall et al89 proposed endotype classifi-
cation of asthma syndromes, which included ABPM. The charac-
teristics of ABPM included severe asthma, blood and pulmonary
eosinophilia, markedly increased IgE and specific IgE levels,



TABLE II. Fungal allergens approved by the Nomenclature Sub-

committee of the IUIS*

Fungal species Allergen

Molecular

weight (kd) Biological activity

Phylum Ascomycota

Alternaria

alternata

Alt a 1 28

Alt a 3 Heat Shock Protein 70

Alt a 4 57 Disulfide isomerase

Alt a 5 11 Ribosomal protein P2

Alt a 6 45 Enolase

Alt a 7 22 YCP4 protein

Alt a 8 29 Mannitol

dehydrogenase

Alt a 10 53 Aldehyde

dehydrogenase

Alt a 12 11 Acid ribosomal protein

P1

Alt a 3 26 Gulathione-S-

transferase

Aspergillus flavus Asp fl 13 34 Alkaline serine protease

Aspergillus

fumigatus

Asp f 1 18 Mitogillin family

Asp f 2 37

Asp f 3 19 Peroxysomal protein

Asp f 4 30

Asp f 5 40 Metalloprotease

Asp f 6 26.5 Mn Superoxide

dismutase

Asp f 7 12

Asp f 8 11 Ribosomal protein P2

Asp f 9 34

Asp f 10 34 Aspartate protease

Asp f 11 24 Peptidyl-prolyl

isomerase

Asp f 12 90 Heat Shock protein P90

Asp f 13 34 Alkaline serine protease

Asp f 15 16

Asp f 16 43

Asp f 17

Asp f 18 34 Vacuolar serine

protease

Asp f 22 46 Enolase

Asp f 23 44 Ribosomal protein L3

Asp f 27 18 Cyclophilin

Asp f 28 13 Thioredoxin

Asp f 29 13 Thioredoxin

Asp f 34 20 PhiA cell wall protein

Aspergillus niger Asp n 14 105 Beta-xylosidase

Asp n 18 34 Vacuolar serine

protease

Asp n 25 66-100 3-phytase B

Aspergillus oryzae Asp o 13 34 Alkaline serine protease

Asp o 21 53 TAKA-amylase A

Aspergillus

versicolor

Asp v 13 43 Extracellular alkaline

serine protease

Candida albicans Cand a 1 40 Alcohol dehydrogenase

Cand a 3 20 Peroxysomal protein

Candida boidinii Cand b 2 20 Peroxysomal membrane

protein A

Cladosporium

cladosporioides

Cla c 9 36 Vacuolar serine

protease

(Continued)

TABLE II. (Continued)

Fungal species Allergen

Molecular

weight (kd) Biological activity

Cla c 14 36.5 Transaldolase

Cladosporium

herbarum

Cla h 2 45

Cla h 5 11 Acid ribosomal protein

P2

Cla h 6 46 Enolase

Cla h 7 22 YCP4 Protein

Cla h 8 28 Mannitol

dehydrogenase

Cla h 9 Vacuolar serine

protease

Cla h 10 53 Aldehyde

dehydrogenase

Cla h 12 11 Acid ribosomal protein

P1

Curvlaria lunata Cur l 1 31 Serine protease

Cur l 2 48 Enolase

Cur l 3 12 Cytochrome c

Cur l 4 54 Vacuolar serine

protease

Epicoccum

purpurascens

Epi p 1 30 Serine protease

Fusarium

culmorum

Fus c 1 11 Ribosomal protein P2

Fus c 2 13 Thioredoxin-like

protein

Penicillium

brevicompactum

Pen b 13 33 Alkaline serine protease

Pen b 26 11 Acidic ribosomal

protein P1

Penicillium

chrysogenum

Pen ch 13 34 Alkaline serine protease

Pen ch 18 32 Vacuolar serine

protease

Pen ch 20 68 N-acetyl

glucosaminidase

Pen ch 31 Calreticulin

Pen ch 33 16

Pen ch 35 36.5 Transaldolase

Penicillium

citrinum

Pen c 3 18 Peroxysomal membrane

protein

Pen c 13 33 Alkaline serine protease

Pen c 19 70 Heat shock protein P70

Pen c 22 46 Enolase

Pen c 24 Elongation factor 1 beta

Pen c 30 97 Catalse

Pen c 32 40 Pectate lyase

Penicillium

oxalicum

Pen o 18 34 Vacuolar serine

protease

Stachybotrys

chartarum

Sta c 3 21 Extracellular alkaline

Mg-dependent

exodesoxyribo-

nuclease

Trichophyton

rubrum

Tri r 2 Putative secreted

alkaline protease

Alp 1

Tri r 4 Serine protease

Trichophyton

tonsurans

Tri t 1 30

Tri t 2 83 Serine protease

(Continued)
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TABLE II. (Continued)

Fungal species Allergen

Molecular

weight (kd) Biological activity

Phylum Basidiomycota

Coprinus comatus Cop c 1 11 Leucine zipper protein

Cop c 2 Thioredoxin

Cop c 3

Cop c 5

Cop c 7

Malassezia furfur Mala f 2 21 Peroxysomal membrane

protein

Mala f 3 20 Peroxysomal membrane

protein

Mala f 4 35 Mitochondrial malate

dehydrogenase

Malassezia

sympodialis

Mala s 1

Mala s 5

Mala s 6 Cyclophilin

Mala s 7

Mala s 8

Mala s 9

Mala s 10 86 Heat shock protein 70

Mala s 11 23 Manganese superoxide

dismutase

Mala s 12 67 Glucose-methanol-

choline

oxidoreductase

Mala s 3 13 Thioredoxin

Psilocybe cubensis Psi c 1

Psi c 2 16 Cyclophilin

Rhodotorula

mucilaginosa

Rho m 1 Enolase

Rho m 2 47 Vacuolar serine

protease

*Current as of April 29, 2010 (http://www.allergen.org).
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bronchiectasis, and mold colonization of the airways. Genetic
risks of ABPM can include CF variants and HLA association.
Sensitization to A fumigatus is common, particularly in patients
with more severe airway disease,90 although few fulfill all the cri-
teria for ABPA. The term severe asthma associated with fungal
sensitivity (SAFS) has been coined to illustrate the high rate of
fungal sensitivity in patients with severe asthma and response to
oral antifungal therapy with itraconazole.91 It is speculative
whether ABPA represents one florid manifestation of a spectrum
of fungus-associated airway disease.
Fungal sensitivity in patients with severe asthma
The human lung is not sterile from a fungal perspective in most

persons. The conidia of A fumigatus, Penicillium and Cladospo-
rium species, and presumably other fungi are nonreactive, only in-
ducing an immune response when germination is initiated.92

Excess mucus and airway architecture distortion can allow
fungal germination and protection from immune attack, with a
consequent inflammatory reaction. Although A fumigatus is the
most common fungus found in the airways, much of which is
not culturable,87 other fungi can be cultured from sputum in asth-
matic patients. In a study of 126 patients with severe asthma, 24
different fungal species were cultured from sputum, usually in as-
sociation with A fumigatus. In approximately 50% of these
patients, cultures were positive without evidence of IgE fungal
sensitization, suggesting that fungal colonization of the airways
is common, even in the absence of an allergic component. In pa-
tients with severe asthma, Fairs et al93 reported that there was a
significant association between A fumigatus IgE sensitization,
colonization, and impaired postbronchodilator FEV1. This obser-
vation is analogous with data emerging from patients with CF and
A fumigatus colonization.94 Given this, it is not surprising that pa-
tients with SAFS respond to antifungal therapy.
Diagnosis of fungal sensitization
SPTs and specific serum IgE tests are used to determine

sensitization to various fungi.95 Common fungi tested included A
fumigatus,Calbicans,Aalternata (Alternaria tenuis),P chrysoge-
num (P notatum), C herbarum, and Saccharomyces cerevisiae.
Fungi less commonly tested, although some reagents are available,
included other species of Aspergillus, Botrytis cinerea, Trichophy-
ton species, Malassezia species, Aureobasidium pullulans, Hel-
minthosporium halodes, Epicoccum species, Fusarium species,
Mucor species, Rhizopus species, and Coprinus species. The ac-
curacy of SPTs for positive results is approximately 50% to
60%, with variations dependent on the reagent and manufacturer,
potency of extracts, and interpretation of results. The negative pre-
dictive result has a 95% accuracy.96-99 Major geographic and age
variations in the frequency of sensitization to fungi are seen.97,98

In vitromeasurement of specific IgE antibodies can be useful in
patients who cannot undergo SPTs.96-99 Smits et al96 found that
only 43% of patients reacted to both SPTs and serum specific
IgE (sIgE) tests when tested for common aeroallergens and foods.
O’Driscoll et al99 described a general lack of concordance be-
tween positive SPT responses and serum sIgE testing in patients
with severe asthma, with the best concordance noted inAlternaria
species (56%) and the worst in Botrytis species (14%). Both au-
thors recommended the use of both tests for a definitive diagnosis
because not all sensitivities will be identified with the use of one
alone. It has been reported that SPTs are more sensitive but less
specific than serum sIgE tests to diagnose allergic sensitization
in subjects with asthma or rhinitis.98 O’Driscoll et al99 prospec-
tively examined SPT and serum sIgE test results to individual
fungi together and separately in patients with severe asthma in
the United Kingdom. Among 121 patients, 66% demonstrated
sensitization to 1 or more fungi on either test. Nine of these pa-
tients had a total serum IgE level of greater than 1000 IU/mL: 6
likely had ABPA, and 3 had ABPM to other fungi (1 to Candida
species and 2 to Trichophyton species). Sensitization to multiple
fungi or sensitization to cross-reacting allergens can occur.100

Others have demonstrated relatively high rates of sensitization
to other fungi in asthmatic patients, including Rhizopus and
Mucor species.101
PATHOPHYSIOLOGY OF FUNGAL DISEASES OF

THE LOWER AIRWAYS

b-Glucan and dectin receptors
(1/3)-b-D-glucans are part of the carbohydrate structures in

the cell walls ofmolds, some bacteria, and plants; up to 60%of the
dry weight of the cell wall of fungi might be glucans.102 An asso-
ciation between high b-glucan levels and increased peak expira-
tory flow variability has been observed in children with
asthma.103 The presence of visiblemold and exposure tob-glucan

http://www.allergen.org
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in infancy appear to be risk factors for asthma by age 3 years.104

On the other hand, high levels ofb-glucan exposuremight have an
opposite effect on asthma risk compared with visible mold. In-
door fungal species vary widely in their content of b-glucan,
and although Aspergillus and Alternaria species are highly aller-
genic, they have relatively low levels of b-glucan. Of the 36 in-
door fungal species tested, Cladosporium and Aspergillus
genera were the most important contributors to the indoor
b-glucan levels105; A alternata did not seem to be an important
contributor to indoor b-glucan levels.

Dectin-1 is a receptor for b-glucan on macrophages, neutro-
phils, and dendritic cells that transduces signals for vigorous cell
response with phagocytosis, oxidative burst, and production of
inflammatory mediators, including IL-8, IL-6, IL-12, IL-18, and
TNF-a.106,107 In mice dectin-1 and Toll-like receptor (TLR)
2–mediated neutrophil recruitment and TNF-a and macrophage
inflammatory protein 2 secretion when germinating conidia of
A fumigatus were administered into murine trachea.108,109 The
dectin-1–mediated response to fungi can also be involved in adap-
tive immune responses, including the regulation of the TH17 re-
sponse and generation of regulatory T cells.107,109
Fungal proteases and protease-activated receptors
Fungi contain many proteases that are required for growth and

are also fungal allergens.2,110 It is possible that the proteolytic
activity of fungal proteases contributes to their own immunoge-
nicity or that of other fungus-derived proteins. In vitro fungal pro-
teases damage an epithelial layer system with shrinkage,
desquamation, and disruption of intercellular adhesion.2,110

Once the epithelial layer is damaged, proteases/allergens have
better access to themucosal and subepithelial layer. Damaged, ac-
tivated, or both epithelial cells produce IL-6 and IL-8; these proin-
flammatory cytokines could lead to an exacerbation of asthma.
Damage in the airwaymediated by protease activities shows path-
ologic changes analogous to that of asthma.110 Protease activities
can be recognized by unique receptors, protease-activated recep-
tors (PARs), which are expressed by tissue cells and cells involved
in the immune response in the airways. PAR-1, PAR-2, PAR-3,
and PAR-4 are present on the epithelium in bronchial biopsy spec-
imens from asthmatic patients and healthy subjects.111 PAR-2 is
overexpressed on epithelial cells from asthmatic patients com-
pared with that seen in healthy control subjects, suggesting in-
creased vulnerability of asthmatic patients to proteases from
fungi or other sources.
Chitinases
Chitin is a major structural component of the outer coatings of

many organisms, such as fungi, parasitic nematodes, and arthro-
pods.112,113 Reese et al114 found that mice treated with chitin have
an allergic response, characterized by a build-up of IL-4–express-
ing innate immune cells. Shuhui et al115 proposed that chitin-
degrading enzyme acidic mammalian chitinases in epithelial cells
stimulates the release of monocyte chemoattractant proteins 1 and
2, macrophage inflammatory protein 1, and eotaxin. Chitinase can
also stimulate airway smooth muscle. Increased chitinase levels
have been associated with asthma and increased IgE levels, per-
haps through an IL-13 pathway.116,117 Furthermore, polymor-
phisms in the promoter of acidic mammalian chitinase have
been associated with atopic asthma and increased IgE levels.117
Mycotoxins and volatile organic compounds
Patients with asthma tend to be more readily symptomatic by

respiratory exposure to airborne irritants, such as perfume and
smoke, than healthy subjects. Fungi produce mycotoxins as
nonvolatile secondary metabolites and volatile organic com-
pounds as byproducts of metabolism.118 The volatile organic
compounds are potential asthma triggers119; however, the amount
and duration of exposure to mycotoxins are difficult to quantify.
HLA class II antigens
In patients with ABPA, HLA-DR2 (HLA-DRB1*15 and

B1*16)/HLA-DR5 (HLA-DRB1*11 and HLA-DRB1*12) re-
striction was reported as a risk factor for the development of
ABPA.120 Furthermore, HLA-DQB1*02 was protective in the de-
velopment of ABPA. Similarly, DQB1*03 appeared to be protec-
tive in the development of Alternaria species– and mold-sensitive
moderate-to-severe asthma in children.121 The HLA-DQB1*03
genotypewas associated with decreased Alternaria species–stim-
ulated IL-5 and IL-13 synthesis.
IL4RA and IL13 polymorphisms
Single nucleotide polymorphisms (SNPs) of IL-4 receptor a

chain (IL4RA), IL4, IL10, IL13, and CD14 have been described in
patients with asthma.122 A number of SNPs of these genes are asso-
ciated with atopy prevalence and asthma severity.123 Increased fre-
quency of the ser503pro IL4RA polymorphism was observed in
adults with severe asthma.124 IL13 110gln was associated with
increased IgE levels and increased asthma severity125; the 110gln
polymorphism is significantly more active than wild-type IL13 in
stimulating signal transducer and activator of transcription 6 phos-
phorylation, CD23 upregulation, and IgE synthesis. In patientswith
ABPA, Knutsen et al126 reported that IL4RA SNPs and in particular
the ile75val SNP in the IL-4 binding region was another risk factor.
In studies of Alternaria species–sensitive patients with moderate-
to-severe asthma, the presence and allele frequency of the IL4RA
ile75val SNP was also significantly increased.
Polymorphisms in innate immune receptors
Carvalho et al127 examined TLR polymorphisms of TLR2,

TLR4, and TLR9 in patients with cavitary pulmonary aspergillo-
sis, ABPA, and SAFS. No association of TLR2, TLR4, or TLR9
polymorphisms was found in SAFS. Patients with ABPA had in-
creased frequency of allele C for the TLR9 T-1237C polymor-
phism compared with control subjects. Novak et al128 reported
that the mechanism might be that the TLR9 C allele of T-1237C
decreases expression of TLR9. Decreased TLR9 protective func-
tion might be an underlying susceptibility in the development of
ABPA and asthma.
Integrinb3 (ITGB3) encodes ab-integrin that comprises part of

the platelet- and monocyte-specific heterodimeric receptor for fi-
brinogen and the receptor for vitronectin. Polymorphisms of
ITGB3 have been associated with asthma and mold sensitiza-
tion.129 Smit et al130 reported that the TLR2/1596 C polymor-
phism was associated with asthma. Furthermore, they identified
that ITGB3 SNPs are associated with mold sensitization in pa-
tients with asthma and hypothesized that an association of the
TLR2/1596 genotype and ITGB3 SNPs might influence the asso-
ciation of mold sensitization in adults with asthma.



TABLE III. Possible treatments of ABPA

Therapy Typical dose Typical duration Objectives of therapy Monitoring Comments

Prednisone

(prednisolone)

Adults: 40-50 mg qd

Pediatric patients:

0.5-1 mg/kg/d

10 d-6 wk, depending

on response;

convert to alternate-

day prednisone

after 1-2 wk for

longer-term

treatment

Improvement of

wheeze and allows

resolution of

mucoid impactions

Chest radiograph and

clinical. IgE level

slow to decrease,

expected to

decrease by 33% in

6 wk; blood glucose

Attempt to stop in all

patients; sometimes

not possible

Inhaled

corticosteroids

Variable Long-term Asthma control; of no

proved value for

exacerbation of

ABPA

PF, FEV1, symptoms Interactions with

itraconazole,

increasing exposure

Hypertonic saline,

nebulized

4 mL, 7% unit dose

bid

Exacerbations or

long-term

Reduce viscosity of

sputum to ease

expectoration

Sputum thickness,

ease of

expectoration and

dyspnea

Always challenge first

dose under

supervision because

bronchospasm an

issue; beware those

with FEV1 <1.0 L/s.

Itraconazole Adults: 300-400 mg

qd or 500 mg bid in

patients with CF

Pediatric patients:

5-10 mg/kg/d, divided

bid if >_200 mg

Long-term Steroid sparing;

eradication of

Aspergillus species

in airways;

improved asthma

control

Itraconazole levels to

optimize initially

and check

compliance;

cortisol and total

steroid dose

Fungal cultures and

MICs; Aspergillus

species PCR in

sputum if available;

sensory disturbance

Toxicity minimized if

blood levels in

therapeutic range;

resistance can

occur, PCR positive

an indication of

resistance; new

pulmonary

infiltrates can occur

with elevation of

total serum IgE

Voriconazole Adults: 200-600

mg qd

Pediatric patients:

<40 kg 100 mg bid
>_40 kg 200 mg bid

Months or years Same as itraconazole Voriconazole levels to

optimize initially

and check

compliance;

photosensitivity;

fungal cultures and

MICs; Aspergillus

species PCR in

sputum; sensory

disturbance

For those intolerant or

who fail

itraconazole;

photosensitivity

limiting in some

white subjects;

increases

prednisone

exposure by

approximately

30%; limited

experience in

ABPA

Posaconazole Adults:

800 mg qd

Pediatric patients:
>_13 y

400 mg bid

Long-term Same as itraconazole Fungal cultures and

MICs; Aspergillus

species PCR in

sputum;

posaconazole levels

if adverse events to

determine whether

dose can be

decreased

For those intolerant or

in whom

itraconazole and

voriconazole fail;

limited experience

in ABPA

Azithromycin Adults:

250 mg qd or 33
weekly

Pediatric patients:

5 mg/kg/d qd or in CF

<40 kg 250 33
weekly

>_40 kg 500 33
weekly

Long-term Airway anti-

inflammatory

action

Cough frequency and

nocturnal

wakening; sputum

production

If no effect after

approximately 2-3

mo, should be

stopped

Omalizumab 75-600 mg SC 2-4

weekly

Long-term, if effective

at 16 wk

Reduction in IgE-

mediated asthma

Asthma control Limited experience in

ABPA

bid, Twice daily; MIC, minimum inhibitory concentration; PF, peak flow; qd, once daily; SC, subcutaneously.
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Molecules in the collectin family, such as mannose-binding
lectin (MBL), pentraxin 3, and surfactant proteins, have all been
demonstrated to bind Aspergillus species. Polymorphism of
MBL2 at G11011 in intron 1 results in increased MBL levels
and has been associated with development of ABPA. Saxena
et al131 reported that patients with ABPA with polymorphisms
(ala91pro and arg94arg) in the collagen region of pulmonary sur-
factant protein A2 had more increased total IgE levels and higher
percentages of eosinophilia than patients who lacked the SNPs.
They found that 80% of patients carrying both SNPs had
ABPA, suggesting an additive effect.
TREATMENT OF ALLERGIC FUNGAL LUNG

DISEASES

ABPA
Exacerbations of ABPA are best treated with a course of oral

steroids over 3 to 6 weeks (Table III).132 No prospective studies
with corticosteroids have been conducted to evaluate efficacy
rates, optimum dose, and duration or relapse rates. There are con-
flicting data concerning the clinical utility of inhaled corticoste-
roids in reducing exacerbation frequency, but they are important
in controlling underlying asthma (Table III).133,134 The potential
utility of systemic antifungal therapy for ABPAwas first shown in
the early 1990s.135 Two placebo-controlled randomized studies
demonstrated benefit from itraconazole treatment (200 mg twice
daily initially).136,137 The outcomes that were assessed in the first
study were as follows: reduction in corticosteroid oral dose, re-
duction in total IgE levels, and increases in exercise tolerance
or pulmonary function on testing.136 In the second study eosino-
phils in sputum, total serum IgE levels and Aspergillus IgG levels,
and exacerbations requiring corticosteroid courses were signifi-
cantly reduced in itraconazole-treated subjects (P 5 .03).137

Overall, about 60% of patients benefit from itraconazole (number
needed to treat 5 3.58). Itraconazole levels should be monitored
to optimize exposure. Sufficient exposure to itraconazole is prob-
ably important to ensure efficacy, and low plasma levels (ie, <5
mg/L [bioassay] or <1.0 mg/L [HPLC]) might require switching
between capsules and oral solution and sometimes increasing the
dose. Proton-pump inhibitors and H2 blockers reduce absorption
of itraconazole capsules, and different capsule formulations differ
in bioavailability. Excessive itraconazole concentrations often re-
sult in adverse events, and dose reduction is advised. The duration
of itraconazole therapy is not clear but should not be less than 6
months in those who tolerate it and might be extended safely
with benefit for years. In patients who cannot tolerate itracona-
zole, voriconazole or posaconazole might be helpful (Table III).
Two retrospective series of voriconazole in patients with ABPA
and CF suggest benefit, and our experience in patients without
CF is similar or better. There are a number of case series of pa-
tients reporting the benefit of omalizumab in the therapy of
ABPA138-140 but no randomized studies, and therefore efficacy
is uncertain. Exacerbations of ABPA or difficult-to-treat asthma
(with fungal sensitization) necessitate considering the home and
workplace environment or the patient’s activities, such as garden-
ing with fungus-laden mulches, that might be subject to change.
Bronchiectasis is a common sequela of ABPA. Sometimes

patients with bronchiectasis do better with long-term macrolide
treatment (ie, azithromycin) if they are highly symptomatic; no
large randomized controlled studies have been done, but clinical
experience is positive for many patients.141-143 Initiation of
azithromycin therapy should immediately follow a different class
of antibiotic in those with purulent sputum to ‘‘clean out the air-
ways’’ to minimize the immediate acquisition of macrolide
resistance.

SAFS and ABPM
Patients with SAFS usually have severe asthma requiring

multiplemedications. Inhaled corticosteroids and frequent courses
of oral corticosteroids usually control patients’ worst symptoms
but at the long-term cost ofwell-known adverse events. Antifungal
therapywith itraconazole (200mg twice daily) is beneficial in hav-
ing a major effect on pulmonary and nasal symptoms in 60% of
treated patients (number needed to treat5 3.22).144 Early evidence
suggests that omalizumab might also be beneficial.138-140

Exposure reduction
Reductions in asthma morbidity subsequent to interventions

for improving overall indoor air quality, decreasing humidity, and
remediation of moisture incursion have been demonstrated.145-147

Fungal allergen immunotherapy
Large-scale, double-blind, placebo-controlled studies of fungal

allergen immunotherapy are wanting, in part because of the lack
of standardized therapeutic reagents. A limited number of con-
trolled trials with A alternata and C herbarum have shown some
clinical benefit.148 Immunotherapy for ABPA is not generally rec-
ommended; however, patients might receive or continue allergen
immunotherapy for treatment of allergic rhinitis or asthma. His-
torically, fungal (mold) extracts are not included in the treatment
mixes.

What do we know?
d Sensitivity to molds, especially Alternaria and Cladospo-

rium species, is associated with the development, persis-
tence, and severity of allergic asthma.

d ABPA is the most common form of ABPM. ABPA might
represent an extreme manifestation of a spectrum of im-
munologically mediated fungus-associated airway disease.

d Sensitization to A fumigatus is common in asthmatic pa-
tients with more severe airway disease (ie, so-called
SAFS).

d Both ABPA and SAFS might respond to antifungal ther-
apy, as well as corticosteroids. What is still unknown?

d The pathophysiology and genetic risks of mold sensitivity
in patients with severe asthma remain to be fully
elucidated.

d The diagnostic criteria of ABPA, ABPM, and SAFS need
to be better defined.

d The role of antifungal and immunomodulating therapies
in the treatment of ABPA, ABPM, and SAFS requires fur-
ther controlled clinical trials for validation and determi-
nation of the role in overall management.
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